Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 583(7818): 780-784, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728238

RESUMO

In the regime of deep strong light-matter coupling, the coupling strength exceeds the transition energies of the material1-3, fundamentally changing its properties4,5; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction1,6. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect-the increase of radiative damping through light-matter coupling-and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light-matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology4,5.

2.
Acc Chem Res ; 56(17): 2278-2285, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607332

RESUMO

ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.

3.
Soft Matter ; 20(18): 3836-3844, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651356

RESUMO

The aggregation and onset of gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy. Tracking structural dynamics with sub-ms time resolution over a total experimental time of 8 hours corresponding to a time windows larger than 108 Brownian times and varying the temperature between 298 K and 266 K we can identify three regimes. First, while cooling to 275 K the particles show Brownian motion that slows down due to the increasing viscosity. Second, upon further cooling the static structure changes significantly, indicated by a broad structure factor peak. We attribute this to the formation of aggregates while the dynamics are still dominated by single-particle diffusion. Finally, the relaxation functions become more and more stretched accompanied by an increased slow down of the dynamics. At the same time the structure changes continuously indicating the onset of gelation. Our observations further suggest that the colloidal aggregation and gelation is characterized first by structural changes with a subsequent slowing down of the systems dynamics. The analysis also reveals that the details of the gelation process and the gel structure strongly depend on the thickness of the PEG-coating of the gold nanoparticles.

4.
Arch Toxicol ; 98(12): 3949-3971, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39261308

RESUMO

Man-made vitreous fibers (MMVF) comprise diverse materials for thermal and acoustic insulation, including stone wool. Depending on dimension, durability, and dose, MMVF might induce adverse health effects. Therefore, early predictive in vitro (geno)toxicity screening of new MMVF is highly desired to ensure safety for exposed workers and consumers. Here, we investigated, as a starting point, critical in vitro screening determinants and pitfalls using primary rat alveolar macrophages (AM) and normal rat mesothelial cells (NRM2). A stone wool fiber (RIF56008) served as an exemplary MMVF (fibrous vs. ground to estimate impact of fiber shape) and long amosite (asbestos) as insoluble fiber reference. Materials were comprehensively characterized, and in vivo-relevant in vitro concentrations defined, based on different approaches (low to supposed overload: 0.5, 5 and 50 µg/cm2). After 4-48 h of incubation, certain readouts were analyzed and material uptake was investigated by light and fluorescence-coupled darkfield microscopy. DNA-strand break induction was not morphology-dependent and nearly absent in both cell types. However, NRM2 demonstrated material-, morphology- and concentration-dependent membrane damage, CINC-1 release, reduction in cell count, and induction of binucleated cells (asbestos > RIF56008 > RIF56008 ground). In contrast to NRM2, asbestos was nearly inactive in AM, with CINC-1 release solely induced by RIF56008. In conclusion, to define an MMVF-adapted, predictive in vitro (geno)toxicity screening tool, references, endpoints, and concentrations should be carefully chosen, based on in vivo relevance, and sensitivity and specificity of the chosen cell model. Next, further endpoints should be evaluated, ideally with validation by in vivo data regarding their predictivity.


Assuntos
Macrófagos Alveolares , Fibras Minerais , Animais , Macrófagos Alveolares/efeitos dos fármacos , Fibras Minerais/toxicidade , Ratos , Dano ao DNA/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Masculino , Ratos Wistar , Relação Dose-Resposta a Droga , Amianto Amosita/toxicidade , Linhagem Celular , Testes de Toxicidade/métodos
5.
Nano Lett ; 23(13): 5943-5950, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350548

RESUMO

Dynamics of optically excited plasmonic nanoparticles are presently understood as a series of scattering events involving the initiation of nanoparticle breathing oscillations. According to established models, these are caused by statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot-electron pressure accounts for phase mismatches between theory and experimental observations. However, direct experimental studies resolving the breathing-oscillation excitation are still missing. We used optical transient-absorption spectroscopy and time-resolved single-particle X-ray diffractive imaging to access the electron system and lattice. The time-resolved single-particle imaging data provided structural information directly on the onset of the breathing oscillation and confirmed the need for an additional excitation mechanism for thermal expansion. We developed a new model that reproduces all of our experimental observations. We identified optically induced electron density gradients as the initial driving source.

6.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791579

RESUMO

Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.


Assuntos
Ouro , Nanopartículas Metálicas , Polímeros , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Polímeros/química , Humanos , Pontos Quânticos/química , Propriedades de Superfície , Proteínas/química
7.
J Chem Educ ; 101(8): 3146-3155, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157433

RESUMO

When bulk materials are reduced in size to the nanometer scale, in particular, their surface-to-volume ratio increases drastically. We introduce some simple experiments on how to visualize this concept to students in the framework of a laboratory class. In the same context, experiments to demonstrate the consequences of this on the properties of the materials are introduced. This will involve solubility and chemical surface reactivity of the materials and properties originated from the surface. In the framework of their chemical reactivity, potential benefits and threads of nanomaterials due to their high surface-to-volume ratio will be discussed, such as applications as catalysts and their impact on nanotoxicology.

8.
Proc Natl Acad Sci U S A ; 117(39): 24110-24116, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934145

RESUMO

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 µs at high fluences. At short times up to 20 µs we observe that the dynamics do not obey the Stokes-Einstein predictions.

9.
Small ; 18(37): e2201324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905490

RESUMO

X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.


Assuntos
Ouro , Nanopartículas Metálicas , Difusão Dinâmica da Luz , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral , Raios X
10.
J Chem Phys ; 157(18): 184901, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379773

RESUMO

The gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is probed in situ by x-ray photon correlation spectroscopy. Following the evolution of structure and dynamics over 104 s, a three-step gelation process is found. First, a simultaneous increase of the Ornstein-Zernike length ξ and slowdown of dynamics is characterized by an anomalous q-dependence of the relaxation times of τ ∝ q-6 and strongly stretched intermediate scattering functions. After the structure of the gel network has been established, evidenced by a constant ξ, the dynamics show aging during the second gelation step accompanied by a change toward ballistic dynamics with τ ∝ q-1 and compressed correlation functions. In the third step, aging continues after the arrest of particle motion. Our observations further suggest that gelation is characterized by stress release as evidenced by anisotropic dynamics once gelation sets in.


Assuntos
Ouro , Nanopartículas Metálicas , Raios X , Ouro/química , Água/química , Análise Espectral
11.
J Synchrotron Radiat ; 28(Pt 3): 812-823, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949989

RESUMO

Small-angle X-ray scattering (SAXS) is an established method for studying nanostructured systems and in particular biological macromolecules in solution. To obtain element-specific information about the sample, anomalous SAXS (ASAXS) exploits changes of the scattering properties of selected atoms when the energy of the incident X-rays is close to the binding energy of their electrons. While ASAXS is widely applied to condensed matter and inorganic systems, its use for biological macromolecules is challenging because of the weak anomalous effect. Biological objects are often only available in small quantities and are prone to radiation damage, which makes biological ASAXS measurements very challenging. The BioSAXS beamline P12 operated by the European Molecular Biology Laboratory (EMBL) at the PETRA III storage ring (DESY, Hamburg) is dedicated to studies of weakly scattering objects. Here, recent developments at P12 allowing for ASAXS measurements are presented. The beamline control, data acquisition and data reduction pipeline of the beamline were adapted to conduct ASAXS experiments. Modelling tools were developed to compute ASAXS patterns from atomic models, which can be used to analyze the data and to help designing appropriate data collection strategies. These developments are illustrated with ASAXS experiments on different model systems performed at the P12 beamline.

12.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916283

RESUMO

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Assuntos
Ouro , Nanopartículas , Imagem Óptica , Espectrometria por Raios X , Humanos , Células Tumorais Cultivadas
13.
Soft Matter ; 16(11): 2864-2872, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32108204

RESUMO

We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.

14.
J Chem Phys ; 152(6): 064710, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061229

RESUMO

The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron-phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.

15.
Langmuir ; 35(9): 3256-3264, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30607954

RESUMO

In this study, a highly responsive humidity sensor is developed by printing gold nanoparticles (GNPs) grafted with a hygroscopic polymer. These GNPs are inkjet-printed to form a uniform thin film over an interdigitated electrode with a controllable thickness by adjusting the printing parameters. The resistance of the printed GNP thin film decreases significantly upon exposure to water vapor and exhibits a semi-log relationship with relative humidity (RH). The sensor can detect RH variations from 1.8 to 95% with large resistance changes up to 4 orders of magnitude with no hysteresis and small temperature dependence. In addition, with a small thickness, the sensor can reach absorption equilibrium quickly with response and recovery times of ≤1.2 and ≤3 s, respectively. The fast response to humidity changes also allows the GNP thin-film sensor to distinguish signals from intermittent humidification/dehumidification cycles with a frequency up to 2.5 Hz. The printed sensors on flexible substrates show little sensitivity to bending deformation and can be embedded in a mask for human respiratory detection. In summary, this study demonstrates the feasibility of applying printing technology for the fabrication of thin-film humidity sensors, and the methodology developed can be further applied to fabricate many other types of nanoparticle-based sensor devices.

16.
Faraday Discuss ; 214(0): 159-173, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30912539

RESUMO

An ideal plasmonic system for hot-electron generation allows the optical excitation of plasmons, limits radiation losses, exhibits strong non-radiative electron damping, and is made from scalable and cost-effective materials. Here we demonstrate the optical excitation of dark interlayer plasmons in bilayers of colloidal gold nanoparticles. This excitation is created by an antiparallel orientation of the dipole moments in the nanoparticle layers; it is expected to exhibit strongly reduced radiative damping. Despite the vanishing dipole moment, an incoming electromagnetic wave that is propagating normal to the surface will excite the dark mode due to field retardation. We observe a strong peak in the absorption spectrum of a colloidal gold bilayer (nanoparticle diameter = 46 nm); this peak is absent for a nanoparticle monolayer. The full width at half maximum of the dark mode is 230 meV for an ideal nanoparticle crystal and 320 meV for the structure produced by self-assembly out of solution. The position and width of the dark plasmon are efficiently tailored by the interparticle distance within the layer, nanoparticle size and layer number. We present time-resolved pump and probe experiments of hot-electron generation by bright and dark bilayer nanoparticle modes.

17.
Analyst ; 144(5): 1840-1849, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30681077

RESUMO

Aptamers are envisioned to serve as powerful synthetic substitutes to antibodies in a variety of bioanalytical assay formats. However, lateral flow assays (LFAs) remain dominated by antibody-based strategies. In this study, a LFA for the detection of cholera toxin as a model analyte is developed and optimized using a synthetic aptamer and a naturally occurring receptor as biorecognition elements and directly compared with solely aptamer and aptamer and antibody-based alternative approaches. The aptamer (CT916) recently selected by our group, GM1 receptors and an anti-cholera toxin antibody were evaluated. Relying solely on molecules that can easily be synthesized while aiming for high sensitivity, we applied a novel combination of capture aptamer and GM1 cell receptor-labeled liposomes for cholera toxin detection, achieving a limit of detection (LOD) of 2 ng ml-1 (3σ)/10 ng ml-1 (visual) in ∼15 min. To put our novel aptasensor into perspective, we developed a competitive lateral flow assay, exploiting the competition of cholera toxin in solution with immobilized cholera toxin for binding of aptamer-coated gold nanoparticles (AuNPs) (LOD = 51 ng ml-1 (3σ)/100 ng ml-1 (visual), assay time ∼10 min). As dual simultaneously binding aptamers were not available, we designed aptamer antibody pair-based lateral flow assays using aptamer-coated AuNPs which yielded a LOD of 5 ng ml-1 (by the 3σ rule)/10 ng ml-1 (visual) in a 10 min assay and an even better LOD of 0.6 ng ml-1 (3σ)/1 ng ml-1 (visual), with an ∼20 min total assay time. All set-ups are highly specific and provide an excellent alternative for cholera toxin detection in places where professional knowledge and sophisticated equipment are not readily available and cost efficient, simple, and rapid tests are needed, while the combination of GM1 cell receptor-labeled liposomes and aptamers is clearly the most promising.


Assuntos
Aptâmeros de Nucleotídeos/química , Toxina da Cólera/análise , Imunoensaio/métodos , Animais , Anticorpos/imunologia , Sequência de Bases , Toxina da Cólera/imunologia , Cabras , Ouro/química , Limite de Detecção , Lipossomos/química , Nanopartículas Metálicas/química , Coelhos , Receptores de Superfície Celular/química
18.
Phys Chem Chem Phys ; 21(38): 21349-21354, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531471

RESUMO

Colloidal nanocrystals (NC) are known to self-organize into superlattices that promise many applications ranging from medicine to optoelectronics. Recently, the formation of high-quality PEGylated gold NC was reported at high hydrostatic pressure and high salt concentrations. Here, we study the formation kinetics of these superlattices after pressure jumps beyond their crystallisation pressure by means of small-angle X-ray scattering with few ms experimental resolution. The timescale of NC formation was found to be reduced the larger the width of the pressure jump. This is connected to an increase of crystal quality, i.e., the faster the NC superlattice forms, the better the crystal quality. In contrast to the formation kinetics, the melting of the NC superlattice is approximately one order of magnitude slower and shows linear kinetics.

19.
Langmuir ; 33(50): 14437-14444, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29192781

RESUMO

We present a route for the functionalization of gold nanoparticles (AuNP) based on phase transfer functionalization in order to optimize the stability and the potential for self-assembly. Depending on the desired size, different ligand exchanges have to be employed: The maximum AuNP size that can be stabilized without concentration loss is 46 nm for polystyrene-based ligands with 5 and 10 kDa. Small particles <12 nm are better stabilized by smaller ligands. We are able to demonstrate that well-ordered close-packed monolayers of 28 nm AuNP covering at least 400 µm2 are possible with a potential for much larger areas. Such monolayers are of great interest for various fundamental experiments in the context of plasmonics and SERS and for sensor applications.

20.
Sensors (Basel) ; 18(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295594

RESUMO

Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNR S is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario.


Assuntos
Movimento (Física) , Algoritmos , Artefatos , Balistocardiografia , Frequência Cardíaca , Humanos , Fotopletismografia , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa