Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(3): 1364-1377, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36637334

RESUMO

6,13-Bis(tri(isopropyl)silylethynyl)pentacene, a particularly stable acene derivative important for (opto)electronic materials, turns reactive upon electrochemical one-electron oxidation. One of the typically stabilizing tri(isopropyl)silylethynyl substituents becomes involved in a (4 + 2) cycloaddition after redox umpolung. The electrosynthetic dimerization of the title compound provides easy access under mild conditions to a complex scaffold, which includes an intact pentacene, an anthracene, and a phenylene unit, all electronically separated. The product's electrochemical redox properties are explained by superimposed cyclic voltammetric features of the pentacene and the anthracene moieties. The reaction path is analyzed on the basis of electroanalytical and ESR data, and an oxidation-cycloaddition-reduction sequence is elaborated. The contribution of homogeneous electron transfers (electron transfer chain reaction) is negligible, in accordance with the relative formal redox potentials of the starting compound and the product. Quantum chemical calculations indicate that the central cycloaddition should be described as a two-step process with a distonic radical cation intermediate. We suggest an extended notation to define the contribution of the components with respect to electron count in the two-step cycloaddition, [3 + 1, 1 + 1].

2.
Chemistry ; 26(15): 3420-3434, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31985891

RESUMO

The properties as well as solid-state structures, singlet fission, and organic field-effect transistor (OFET) performance of three tetrafluoropentacenes (1,4,8,11: 10, 1,4,9,10: 11, 2,3,9,10: 12) are compared herein. The novel compounds 10 and 11 were synthesized in high purity from the corresponding 6,13-etheno-bridged precursors by reaction with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate at elevated temperatures. Although most of the molecular properties of the compounds are similar, their chemical reactivity and crystal structures differ considerably. Isomer 10 undergoes the orbital symmetry forbidden thermal [4+4] dimerization, whereas 11 and 12 are much less reactive. The isomers 11 and 12 crystallize in a herringbone motif, but 10 prefers π-π stacking. Although the energy of the first electric dipole-allowed optical transition varies only within 370 cm-1 (0.05 eV) for the neutral compounds, this amounts to roughly 1600 cm-1 (0.20 eV) for radical cations and 1300 cm-1 (0.16 eV) for dications. Transient spectroscopy of films of 11 and 12 reveals singlet-fission time constants (91±11, 73±3 fs, respectively) that are shorter than for pentacene (112±9 fs). OFET devices constructed from 11 and 12 show close to ideal thin-film transistor (TFT) characteristics with electron mobilities of 2×10-3 and 6×10-2  cm2 V-1 s-1 , respectively.

3.
J Org Chem ; 83(6): 3149-3158, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29485868

RESUMO

The thermal and photochemical syntheses of 2,3,9,10-tetrafluoropentacene (F4PEN) from 6,13-etheno bridged precursors were investigated computationally and experimentally. A computational study of the retro-Diels-Alder reaction to give 2,3,9,10-tetrasubstituted pentacenes and pyridazine revealed a linear correlation between barrier height and substituent constant (σp) indicative of an electronic effect that could diminish the yield of electron-poor 2,3,9,10-tetrasubstituted pentacenes in this reaction. The photochemical route from the corresponding bridged α-diketone yields F4PEN, which was characterized photophysically, electrochemically, and structurally. The compound crystallizes in a herringbone motif with quite short intermolecular F-F contacts that are, however, only very weakly bonding according to computations. The electrochemical and photophysical data show that the HOMO-LUMO gap of F4PEN is increased compared to that of PEN. This is due to an increase of the oxidation potential of F4PEN by 0.18 V in combination with an essentially unchanged reduction potential. The radical cation and dication of F4PEN could be generated in oxidizing solvents and characterized by optical spectroscopy and ESR or NMR, respectively. Both charged F4PEN species persist for days in solution.

4.
Chemphyschem ; 18(16): 2266-2278, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28590077

RESUMO

6,13-Bis[tri(isopropyl)silylethynyl]pentacene is a prototypical molecule for organic semiconductor and photovoltaic materials, which makes its electrochemical (redox) properties highly interesting. However, previous cyclic voltammetric studies have provided only limited information. Kinetic and persistence information and identification of the oxidation product(s) and their further reaction or oxidation have not been reported. Thus, an extended electrochemical and spectroscopic investigation of this compound was conducted in CH2 Cl2 and THF electrolytes at Pt electrodes. The electrochemically and chemically generated radical cation of the title compound was characterized by using ESR and UV/Vis/NIR spectroscopy and quantum-chemical modeling. In CH2 Cl2 , further oxidation to a dication with chemical reversibility at fast timescales but follow-up reactivity at slow timescales was observed. Pertinent parameters of the electron transfers (formal potentials E0 , electron transfer rate constants ks , electron stoichiometry n) were determined. The diffusion coefficients, D, in the two electrolytes were estimated from electrochemical and pulse gradient spin echo (PGSE) NMR spectroscopy data. Simulations of cyclic voltammograms supported the proposed oxidation mechanism and allowed the estimation of further reaction parameters.

6.
Org Lett ; 19(17): 4428-4431, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28812899

RESUMO

The boron-nitrogen-boron (BNB) zigzag edged benzo[fg]tetracene is accessible from 4-butyl-2,6-diphenylaniline in four steps in good yields. The two mesityl groups stabilize the boron centers toward nucleophilic attack and result in two enantiomeric forms in the solid state. The title compound has a large optical gap, shows blue fluorescence, and is quite resistant toward oxidation and reduction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa