Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(48): e2006767, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615707

RESUMO

Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two-step process is commonly observed, where sodium first adsorbs to polar sites of the carbon ("sloping region") and subsequently fills small voids in the material ("plateau region"). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen-doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene-like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is, quasimetallic sodium can be stabilized in such structure motifs. Finally, gas physisorption measurements are related to charge-discharge data to identify the energy storage relevant pore architectures. Interestingly, these are pores inaccessible to probe gases and electrolytes, suggesting a new view on such "closed pores" required for efficient sodium storage.

2.
Phys Chem Chem Phys ; 23(19): 11488-11500, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33959733

RESUMO

To render the sodium ion battery (SIB) competitive among other technologies, the processes behind sodium storage in hard carbon anodes must be understood. For this purpose, electrochemical impedance spectroscopy (EIS) is usually undervalued, since fitting the spectra with equivalent circuit models requires an a priori knowledge about the system at hand. The analysis of the distribution of relaxation times (DRT) is an alternative, which refrains from fitting arbitrarily nested equivalent circuits. In this paper, the sodiation and desodiation of a hard carbon anode is studied by EIS at different states of charge (SOC). By reconstructing the DRT function, highly resolved information on the number and relative contribution of individual electrochemical processes is derived. During the sloping part of the sodiation curve, mass transport is found to be the most dominant source of resistance but rapidly diminishes when the plateau phase is reached. An equivalent circuit model qualitatively reproducing the experimental data of the sloping region was built upon the DRT results, which is particularly useful for future EIS studies on hard carbon SIB anodes. More importantly, this work contributes to establish EIS as a practical tool to directly study electrode processes without the bias of a previously assumed model.

3.
ChemSusChem ; 17(4): e202301300, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847475

RESUMO

In this work, we report on an improved cell assembly of cylindrical electrochemical cells for 23 Na in-situ solid-state NMR (ssNMR) investigations. The cell set-up is suitable for using powder electrode materials. Reproducibility of our cell assembly is analyzed by preparing two cells containing hard carbon (HC) powder as working electrode and sodium metal as reference electrode. Electrochemical storage properties of HC powder electrode derived from carbonization of sustainable cellulose are studied by ssNMR. 23 Na in-situ ssNMR monitors the sodiation/desodiation of a Na|NaPF6 |HC cell (cell 1) over a period of 22 days, showing high cell stability. After the galvanostatic process, the HC powder material is investigated by high resolution 23 Na ex-situ MAS NMR. The formation of ionic sodium species in different chemical environments is obtained. Subsequently, a second Na|NaPF6 |HC cell (cell 2) is sodiated for 11 days achieving a capacity of 220 mAh/g. 23 Na ex-situ MAS NMR measurements of the HC powder material extracted from this cell clearly indicate the presence of quasi-metallic sodium species next to ionic sodium species. This observation of quasi-metallic sodium species is discussed in terms of the achieved capacity of the cell as well as of side reactions of sodium in this electrode material.

4.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764527

RESUMO

Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of amphiphilic block copolymer membranes prepared via non-solvent-induced phase separation (NIPS). The catalyst immobilization was achieved via wet impregnation due to strong coulombic interactions between protonated tertiary amino groups of the polar poly(2-(dimethylamino)ethyl methacrylate) block and the anionic catalyst. Overall, three sets of five consecutive catalytic cycles were performed in an autoclave under 90 °Ð¡ and 11.5 bar air pressure in methanol, and the corresponding yields of formic acid methyl ester were quantified via head-space gas chromatography. The obtained results demonstrate that the membrane maintains its catalytic activity over multiple cycles, resulting in high to moderate yields in comparison to a homogeneous catalytic system. Nevertheless, presumably due to leaching, the catalytic activity declines over five catalytic cycles. The morphological and chemical changes of the membrane during the prolonged catalysis under harsh conditions were examined in detail using different analytic tools, and it seems that the underlying block copolymer is not affected by the catalytic process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa