Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 198(17): 2345-51, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325680

RESUMO

UNLABELLED: The σE envelope stress response is an essential signal transduction pathway which detects and removes mistargeted outer membrane (OM) ß-barrel proteins (OMPs) in the periplasm of Escherichia coli It relies on σE, an alternative sigma factor encoded by the rpoE gene. Here we report a novel mutation, a nucleotide change of C to A in the third base of the second codon, which increases levels of σE (rpoE_S2R). The rpoE_S2R mutation does not lead to the induction of the stress response during normal growth but instead changes the dynamics of induction upon periplasmic stress, resulting in a faster and more robust response. This allows cells to adapt faster to the periplasmic stress, avoiding lethal accumulation of unfolded OMPs in the periplasm caused by severe defects in the OMP assembly pathway. IMPORTANCE: Survival of bacteria under conditions of external or internal stresses depends on timely induction of stress response signaling pathways to regulate expression of appropriate genes that function to maintain cellular homeostasis. Previous studies have shown that strong preinduction of envelope stress responses can allow bacteria to survive a number of lethal genetic perturbations. In our paper, we describe a unique mutation that enhances kinetics of the σE envelope stress response pathway rather than preinducing the response. This allows bacteria to quickly adapt to sudden and severe periplasmic stress.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Transporte Proteico/fisiologia , Fator sigma/metabolismo , Transdução de Sinais/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/fisiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Fator sigma/genética , Fatores de Transcrição/metabolismo
2.
J Bacteriol ; 198(6): 921-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728192

RESUMO

UNLABELLED: The periplasmic chaperone SurA is critical for the biogenesis of outer membrane proteins (OMPs) and, thus, the maintenance of membrane integrity in Escherichia coli. The activity of this modular chaperone has been attributed to a core chaperone module, with only minor importance assigned to the two SurA peptidyl-prolyl isomerase (PPIase) domains. In this work, we used synthetic phenotypes and covalent tethering to demonstrate that the activity of SurA is regulated by its PPIase domains and, furthermore, that its activity is correlated with the conformational state of the chaperone. When combined with mutations in the ß-barrel assembly machine (BAM), SurA mutations resulting in deletion of the second parvulin domain (P2) inhibit OMP assembly, suggesting that P2 is involved in the regulation of SurA. The first parvulin domain (P1) potentiates this autoinhibition, as mutations that covalently tether the P1 domain to the core chaperone module severely impair OMP assembly. Furthermore, these inhibitory mutations negate the suppression of and biochemically stabilize the protein specified by a well-characterized gain-of-function mutation in P1, demonstrating that SurA cycles between distinct conformational and functional states during the OMP assembly process. IMPORTANCE: This work reveals the reversible autoinhibition of the SurA chaperone imposed by a heretofore underappreciated parvulin domain. Many ß-barrel-associated outer membrane (OM) virulence factors, including the P-pilus and type I fimbriae, rely on SurA for proper assembly; thus, a mechanistic understanding of SurA function and inhibition may facilitate antibiotic intervention against Gram-negative pathogens, such as uropathogenic Escherichia coli, E. coli O157:H7, Shigella, and Salmonella. In addition, SurA is important for the assembly of critical OM biogenesis factors, such as the lipopolysaccharide (LPS) transport machine, suggesting that specific targeting of SurA may provide a useful means to subvert the OM barrier.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/fisiologia , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/genética , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Peptidilprolil Isomerase/genética , Conformação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência
3.
J Bacteriol ; 195(16): 3734-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23772069

RESUMO

The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA and Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Chaperonas Moleculares/metabolismo , Alelos , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Chaperonas Moleculares/genética
4.
J Bacteriol ; 194(5): 1002-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178970

RESUMO

Biogenesis of the outer membrane (OM) is an essential process in gram-negative bacteria. One of the key steps of OM biogenesis is the assembly of integral outer membrane beta-barrel proteins (OMPs) by a protein machine called the Bam complex. In Escherichia coli, the Bam complex is composed of the essential proteins BamA and BamD and three nonessential lipoproteins, BamB, BamC, and BamE. Both BamC and BamE are important for stabilizing the interaction between BamA and BamD. We used comprehensive genetic analysis to clarify the interplay between BamA and the BamCDE subcomplex. Combining a ΔbamE allele with mutations in genes that encode other OMP assembly factors leads to severe synthetic phenotypes, suggesting a critical function for BamE. These synthetic phenotypes are not nearly as severe in a ΔbamC background, suggesting that the functions of BamC and BamE are not completely overlapping. This unique function of BamE is related to the conformational state of BamA. In wild-type cells, BamA is sensitive to externally added proteinase K. Strikingly, when ΔbamE mutant cells are treated with proteinase K, BamA is degraded beyond detection. Taken together, our findings suggest that BamE modulates the conformation of BamA, likely through its interactions with BamD.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Endopeptidase K/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Conformação Proteica , Mapeamento de Interação de Proteínas
5.
Proteomics ; 12(9): 1391-401, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22589188

RESUMO

ß-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, ß-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all ß-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteoma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Chaperonas Moleculares/genética , Mutação , Peptidilprolil Isomerase/genética , Periplasma/metabolismo , Proteoma/genética , Proteômica/métodos
6.
Cancer Res ; 67(19): 9221-8, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909028

RESUMO

Telomere attrition ultimately leads to the activation of protective cellular responses, such as apoptosis or senescence. Impairment of such mechanisms can allow continued proliferation despite the presence of dysfunctional telomeres. Under such conditions, high levels of genome instability are often engendered. Data from both mouse and human model systems indicate that a period of genome instability might facilitate tumorigenesis. Here, we use a liposarcoma model system to assay telomere maintenance mechanism (TMM)-specific genetic alterations. A multiassay approach was used to assess the TMMs active in tumors. Genomic DNA from these samples was then analyzed by high-resolution DNA mapping array to identify genetic alterations. Our data reveal a higher level of genome instability in alternative lengthening of telomere (ALT)-positive tumors compared with telomerase-positive tumors, whereas tumors lacking both mechanisms have relatively low levels of genome instability. The bulk of the genetic changes are amplifications, regardless of the mode of telomere maintenance used. We also identified genetic changes specific to the ALT mechanism (e.g., deletion of chromosome 1q32.2-q44) as well as changes that are underrepresented among ALT-positive tumors, such as amplification of chromosome 12q14.3-q21.2. Taken together, these studies provide insight into the molecular pathways involved in the regulation of ALT and reveal several loci that might be exploited either as prognostic markers or targets of chemotherapeutic intervention.


Assuntos
Lipossarcoma/genética , Telômero/genética , Idoso , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica , Genoma Humano , Instabilidade Genômica , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade
7.
Clin Cancer Res ; 11(15): 5347-55, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16061847

RESUMO

PURPOSE: Telomeres are specialized nucleoprotein complexes that protect and confer stability upon chromosome ends. Loss of telomere function as a consequence of proliferation-associated sequence attrition results in genome instability, which may facilitate carcinogenesis by generating growth-promoting mutations. However, unlimited cellular proliferation requires the maintenance of telomeric DNA; thus, the majority of tumor cells maintain their telomeres either through the activity of telomerase or via a mechanism known as alternative lengthening of telomeres (ALT). Recent data suggest that constitutive telomere maintenance may not be required in all tumor types. Here we assess the role and requirement of telomere maintenance in liposarcoma. EXPERIMENTAL DESIGN: Tumor samples were analyzed with respect to telomerase activity, telomere length, and the presence of ALT-specific subcellular structures, ALT-associated promyelocytic leukemia nuclear bodies. This multi-assay assessment improved the accuracy of categorization. RESULTS: Our data reveal a significant incidence (24%) of ALT-positive liposarcomas, whereas telomerase is used at a similar frequency (27%). A large number of tumors (49%) do not show characteristics of telomerase or ALT. In addition, telomere length was always shorter in recurrent disease, regardless of the telomere maintenance mechanism. CONCLUSIONS: These results suggest that approximately one half of liposarcomas either employ a novel constitutively active telomere maintenance mechanism or lack such a mechanism. Analysis of recurrent tumors suggests that liposarcomas can develop despite limiting or undetectable activity of a constitutively active telomere maintenance mechanism.


Assuntos
Lipossarcoma/ultraestrutura , Telômero/ultraestrutura , Adulto , Idoso , Southern Blotting , Proliferação de Células , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Genoma , Humanos , Processamento de Imagem Assistida por Computador , Lipossarcoma/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Nucleoproteínas/metabolismo , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/ultraestrutura , RNA Mensageiro/metabolismo , Recidiva , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/metabolismo
8.
mBio ; 4(4)2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23943764

RESUMO

UNLABELLED: SurA is a component of the periplasmic chaperone network that plays a central role in biogenesis of integral outer membrane ß-barrel proteins (OMPs) in Escherichia coli. Although SurA contains two well-conserved proline isomerase (PPIase) domains, the contribution of these domains to SurA function is unclear. In the present work, we show that defects in OMP assembly caused by mutation of the ß-barrel assembly factors BamA or BamB can be corrected by gain-of-function mutations in SurA that map to the first PPIase domain. These mutations apparently bypass the requirement for a stable interaction between SurA and the Bam complex and enhance SurA chaperone activity in vivo despite destabilization of the protein in vitro. Our findings suggest an autoinhibitory mechanism for regulation of SurA chaperone activity through interdomain interactions involving a PPIase domain. We propose a model in which SurA activity is modulated by an interaction between SurA and the Bam complex that alters the substrate specificity of the chaperone. IMPORTANCE: The dominant surA mutations described here alter amino acid residues that are highly conserved in eukaryotic homologs of SurA, including Pin 1, the human proline isomerase (PPIase) implicated in Alzheimer's disease and certain cancers. Consequently, a mechanistic description of SurA function may enhance our understanding of clinically important PPIases and their role(s) in disease. In addition, the virulence of Gram-negative bacterial pathogens, such as Salmonella, Shigella, and Escherichia coli O157:H7, is largely dependent on SurA, making this PPIase/chaperone an attractive antibiotic target. Investigating the function of SurA in outer membrane (OM) biogenesis will be useful in the development of novel therapeutic strategies for the disruption of the OM or the processes that are essential for its assembly.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Peptidilprolil Isomerase/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Modelos Biológicos , Peptidilprolil Isomerase/genética , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa