Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384713

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Actomiosina/genética , Humanos , Proteínas com Domínio LIM , Mecanotransdução Celular , Proteínas Musculares , Mutação , Miócitos Cardíacos
2.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446557

RESUMO

For the potential in vitro/in vivo applications of magnetic iron oxide nanoparticles, their stability in different physiological fluids has to be ensured. This important prerequisite includes the preservation of the particles' stability during the envisaged application and, consequently, their invariance with respect to the transfer from storage conditions to cell culture media or even bodily fluids. Here, we investigate the colloidal stabilities of commercial nanoparticles with different coatings as a model system for biogenic iron oxide nanoparticles (magnetosomes) isolated from magnetotactic bacteria. We demonstrate that the stability can be evaluated and quantified by determining the intensity-weighted average of the particle sizes (Z-value) obtained from dynamic light scattering experiments as a simple quality criterion, which can also be used as an indicator for protein corona formation.


Assuntos
Magnetossomos , Nanopartículas , Magnetossomos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro
3.
Arch Biochem Biophys ; 697: 108711, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271148

RESUMO

Substantial variation in relaxation rate exists among cardiomyocytes within small volumes of myocardium; however, it is unknown how this variability affects the overall relaxation mechanics of heart muscle. In this study, we sought to modulate levels of cellular heterogeneity in a computational model, then validate those predictions using an engineered heart tissue platform. We formulated an in silico tissue model composed of half-sarcomeres with varied relaxation rates, incorporating single-cell cardiomyocyte experimental data. These model tissues randomly sampled relaxation parameters from two offset distributions of fast- and slow-relaxing populations of half-sarcomeres. Isometric muscle twitch simulations predicted a complex relationship between relaxation time and the proportion of fast-versus slow-relaxing cells in heterogeneous tissues. Specifically, a 50/50 mixture of fast and slow cells did not lead to relaxation time that was the mean of the relaxation times associated with the two pure cases. Rather, the mean relaxation time was achieved at a ratio of 70:30 slow:fast relaxing cells, suggesting a disproportionate impact of fast-relaxing cells on overall tissue relaxation. To examine whether this behavior persists in vitro, we constructed engineered heart tissues from two lines of fast- and slow-relaxing human iPSC-derived cardiomyocytes. Cell tracking via fluorescent nanocrystals confirmed the presence of both cell populations in the 50/50 mixed tissues at the time of mechanical characterization. Isometric muscle twitch relaxation times of these mixed-population engineered heart tissues showed agreement with the predictions from the model, namely that the measured relaxation rate of 50/50 mixed tissues more closely resembled that of tissues made with 100% fast-relaxing cells. Our observations suggest that cardiomyocyte diversity can play an important role in determining tissue-level relaxation.


Assuntos
Modelos Cardiovasculares , Relaxamento Muscular , Miócitos Cardíacos/metabolismo , Cinética , Miócitos Cardíacos/citologia , Engenharia Tecidual
4.
J Mol Cell Cardiol ; 96: 2-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26454159

RESUMO

Cardiac myosin binding protein C (cMyBP-C) is a thick filament-associated protein that participates in the regulation of muscle contraction. Simplified in vitro systems show that cMyBP-C binds not only to myosin, but also to the actin filament. The physiological significance of these separate binding interactions remains unclear, as does the question of whether either interaction is capable of explaining the behavior of intact muscle from which cMyBP-C has been removed. We have used a computational model to explore the characteristic effects of myosin-binding versus actin-binding by cMyBP-C. Simulations suggest that myosin-cMyBP-C interactions reduce peak force and Ca2 + sensitivity of the myofilaments, but have no appreciable effect on the rate of force redevelopment (ktr). In contrast, cMyBP-C binding to actin increases myofilament Ca2 + sensitivity and slows ktrat sub-maximal Ca2 + values. This slowing is due to cooperation between cMyBP-C 'crossbridges' and traditional myosin crossbridges as they bind to and activate the actin thin filament. We further observed that an overall recapitulation of skinned myocardial data from wild type and cMyBP-C knockout mice requires the interaction of cMyBP-C with of both of its binding targets in our model. The assumption of significant interactions with both partners was also sufficient to explain published effects of cMyBP-C ablation on twitch kinetics. These modeling results strongly support the view that both binding interactions play critical roles in the physiology of intact muscle. Furthermore, they suggest that the widely observed phenomenon of slowed force development in the presence of cMyBP-C may actually be a manifestation of cooperative binding of this protein to the thin filament.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Contração Miocárdica , Animais , Simulação por Computador , Cinética , Camundongos Knockout , Modelos Biológicos , Ligação Proteica
5.
J Gen Physiol ; 153(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319370

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.


Assuntos
Miosinas , Tropomiosina , Miosinas Cardíacas , Cardiomegalia/genética , Humanos , Mutação , Tropomiosina/genética
6.
JACC Basic Transl Sci ; 4(4): 495-505, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31468004

RESUMO

Hypertrophic cardiomyopathy (HCM) is often caused by single sarcomeric gene mutations that affect muscle contraction. Pharmacological correction of mutation effects prevents but does not reverse disease in mouse models. Suspecting that diseased extracellular matrix is to blame, we obtained myocardium from a miniature swine model of HCM, decellularized thin slices of the tissue, and re-seeded them with healthy human induced pluripotent stem cell-derived cardiomyocytes. Compared with cardiomyocytes grown on healthy extracellular matrix, those grown on the diseased matrix exhibited prolonged contractions and poor relaxation. This outcome suggests that extracellular matrix abnormalities must be addressed in therapies targeting established HCM.

7.
Biomaterials ; 147: 116-132, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942128

RESUMO

Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Animais , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Vasos Coronários/fisiologia , Células Endoteliais , Fibroblastos/citologia , Células HEK293 , Humanos , Masculino , Camundongos , Contração Muscular , Músculo Liso Vascular/fisiologia , Ácido Poliglicólico/química , Suínos , Alicerces Teciduais
8.
Stem Cell Reports ; 7(1): 19-28, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27411102

RESUMO

There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/crescimento & desenvolvimento , Engenharia Tecidual , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo
9.
Sci Rep ; 6: 32068, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572147

RESUMO

We have developed an engineered heart tissue (EHT) system that uses laser-cut sheets of decellularized myocardium as scaffolds. This material enables formation of thin muscle strips whose biomechanical characteristics are easily measured and manipulated. To create EHTs, sections of porcine myocardium were laser-cut into ribbon-like shapes, decellularized, and mounted in specialized clips for seeding and culture. Scaffolds were first tested by seeding with neonatal rat ventricular myocytes. EHTs beat synchronously by day five and exhibited robust length-dependent activation by day 21. Fiber orientation within the scaffold affected peak twitch stress, demonstrating its ability to guide cells toward physiologic contractile anisotropy. Scaffold anisotropy also made it possible to probe cellular responses to stretch as a function of fiber angle. Stretch that was aligned with the fiber direction increased expression of brain natriuretic peptide, but off-axis stretches (causing fiber shear) did not. The method also produced robust EHTs from cardiomyocytes derived from human embryonic stem cells and induced pluripotent stem cells (hiPSC). hiPSC-EHTs achieved maximum peak stress of 6.5 mN/mm(2) and twitch kinetics approaching reported values from adult human trabeculae. We conclude that laser-cut EHTs are a viable platform for novel mechanotransduction experiments and characterizing the biomechanical function of patient-derived cardiomyoctyes.


Assuntos
Miocárdio , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Anisotropia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Lasers de Gás , Mecanotransdução Celular , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Politetrafluoretileno , Ratos , Suínos , Tomografia de Coerência Óptica , Tri-Iodotironina/farmacologia
10.
Tissue Eng Part C Methods ; 22(3): 260-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26697757

RESUMO

Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10(-6) in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes.


Assuntos
Dióxido de Carbono/farmacologia , Pulmão/fisiologia , Esterilização/métodos , Células A549 , Animais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Fenômenos Mecânicos/efeitos dos fármacos , Ácido Peracético/farmacologia , Ratos Sprague-Dawley , Alicerces Teciduais/química
11.
Biomaterials ; 102: 220-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344365

RESUMO

Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration.


Assuntos
Células Endoteliais/citologia , Matriz Extracelular/química , Pulmão/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Colágeno/análise , Elastina/análise , Glicosaminoglicanos/análise , Humanos , Pulmão/citologia , Pulmão/fisiologia , Pulmão/ultraestrutura , Ratos , Regeneração , Medicina Regenerativa , Suínos , Resistência à Tração
12.
Biomark Insights ; 10(Suppl 1): 91-103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26085788

RESUMO

Cardiomyocytes derived from human stem cells are quickly becoming mainstays of cardiac regenerative medicine, in vitro disease modeling, and drug screening. Their suitability for such roles may seem obvious, but assessments of their contractile behavior suggest that they have not achieved a completely mature cardiac muscle phenotype. This could be explained in part by an incomplete transition from fetal to adult myofilament protein isoform expression. In this commentary, we review evidence that supports this hypothesis and discuss prospects for ultimately generating engineered heart tissue specimens that behave similarly to adult human myocardium. We suggest approaches to better characterize myofilament maturation level in these in vitro systems, and illustrate how new computational models could be used to better understand complex relationships between muscle contraction, myofilament protein isoform expression, and maturation.

13.
Integr Biol (Camb) ; 7(12): 1598-610, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26426090

RESUMO

There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.


Assuntos
Pulmão , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Linhagem Celular , Separação Celular , Detergentes , Matriz Extracelular/química , Humanos , Pulmão/citologia , Medicina Regenerativa , Sus scrofa , Doadores de Tecidos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa