Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(18): e107735, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34368969

RESUMO

Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5  targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.


Assuntos
Cílios/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Organogênese , Ciclo Celular/genética , Humanos , Organogênese/genética , Análise Serial de Proteínas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Bioessays ; 44(9): e2200087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739619

RESUMO

Cellular processes are highly dependent on a dynamic proteome that undergoes structural and functional rearrangements to allow swift conversion between different cellular states. By inducing proteasomal degradation of inhibitory or stimulating factors, ubiquitylation is particularly well suited to trigger such transitions. One prominent example is the remodelling of the centrosome upon cell cycle exit, which is required for the formation of primary cilia - antenna-like structures on the surface of most cells that act as integrative hubs for various extracellular signals. Over the last decade, many reports on ubiquitin-related events involved in the regulation of ciliogenesis have emerged. Very often, these processes are considered to be initiated ad hoc, that is, directly before its effect on cilia biogenesis becomes evident. While such a temporal restriction may hold true for the majority of events, there is evidence that some of them are initiated earlier during the cell cycle. Here, we provide an overview of ubiquitin-dependent processes in ciliogenesis and discuss available data that indicate such an early onset of proteolytic regulation within preceding cell cycle stages.


Assuntos
Cílios , Ubiquitina , Cílios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitinação
3.
ACS Synth Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991172

RESUMO

DNA shuffling is a powerful technique for generating synthetic DNA via recombination of homologous parental sequences. Resulting chimeras are often incorporated into complex libraries for functionality screenings that identify novel variants with improved characteristics. To survey shuffling efficiency, subsequences of chimeras can be computationally assigned to their corresponding parental counterpart, yielding insight into frequency of recombination events, diversity of shuffling libraries and actual composition of final variants. Whereas tools for parental assignment exist, they do not provide direct visualization of the results, making the analysis time-consuming and cumbersome. Here we present ShuffleAnalyzer, a comprehensive, user-friendly, Python-based analysis tool that directly generates graphical outputs of parental assignments and is freely available under a BSD-3 license (https://github.com/joerg-swg/ShuffleAnalyzer/releases). Besides DNA shuffling, peptide insertions can be simultaneously analyzed and visualized, which makes ShuffleAnalyzer a highly valuable tool for integrated approaches often used in synthetic biology, such as AAV capsid engineering in gene therapy applications.

4.
J Biol Chem ; 287(30): 25602-14, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22645139

RESUMO

In the yeast Saccharomyces cerevisiae, key regulatory enzymes of gluconeogenesis such as fructose-1,6-bisphosphatase are degraded via the ubiquitin proteasome system when cells are replenished with glucose. Polyubiquitination is carried out by the Gid complex, a multisubunit ubiquitin ligase that consists of seven different Gid (glucose-induced degradation-deficient) proteins. Under gluconeogenic conditions the E3 ligase is composed of six subunits (Gid1/Vid30, Gid2/Rmd5, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10). Upon the addition of glucose the regulatory subunit Gid4/Vid24 appears, binds to the Gid complex, and triggers ubiquitination of fructose-1,6-bisphosphatase. All seven proteins are essential for this process; however, nothing is known about the arrangement of the subunits in the complex. Interestingly, each Gid protein possesses several remarkable motifs (e.g. SPRY, LisH, CTLH domains) that may play a role in protein-protein interaction. We, therefore, generated altered versions of individual Gid proteins by deleting or mutating these domains and performed co-immunoprecipitation experiments to analyze the interaction between distinct subunits. Thus, we were able to create an initial model of the topology of this unusual E3 ubiquitin ligase.


Assuntos
Gluconeogênese/fisiologia , Modelos Moleculares , Complexos Multienzimáticos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Glucose/química , Glucose/genética , Glucose/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Commun ; 12(1): 7175, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887419

RESUMO

The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.


Assuntos
RNA Mensageiro/metabolismo , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Monofosfato de Adenosina/metabolismo , Células HeLa , Humanos , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
6.
Cell Cycle ; 15(21): 2860-2866, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27625073

RESUMO

The precise temporal and spatial concentration of microtubule-associated proteins (MAPs) within the cell is fundamental to ensure chromosome segregation and correct spindle positioning. MAPs form an intricate web of interactions among each other and compete for binding sites on microtubules. Therefore, when assessing cellular phenotypes upon MAP up- or downregulation, it is important to consider the protein interaction network between individual MAPs. Here, we show that changes in the amounts of the spindle positioning factor Kar9 specifically affect the distribution of yeast EB1 on spindle microtubules, without influencing other microtubule-associated interacting partners of Kar9, i.e. yeast XMAP215 and CLIP-170. Alterations in the distribution of yeast EB1 explain chromosome segregation defects upon knockout, overexpression or stabilization of Kar9 and provide an example for non-linear effects on MAP behavior after perturbation of their equilibrium.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Segregação de Cromossomos , Técnicas de Inativação de Genes , Modelos Biológicos
7.
Dev Cell ; 36(4): 415-27, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906737

RESUMO

Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
8.
ACS Chem Biol ; 9(7): 1426-31, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24828008

RESUMO

We developed a new approach to distinguish distinct protein conformations in live cells. The method, exposable tetracysteine (XTC), involved placing an engineered tetracysteine motif into a target protein that has conditional access to biarsenical dye binding by conformational state. XTC was used to distinguish open and closed regulatory conformations of Src family kinases. Substituting just four residues with cysteines in the conserved SH2 domain of three Src-family kinases (c-Src, Lck, Lyn) enabled open and closed conformations to be monitored on the basis of binding differences to biarsenical dyes FlAsH or ReAsH. Fusion of the kinases with a fluorescent protein tracked the kinase presence, and the XTC approach enabled simultaneous assessment of regulatory state. The c-Src XTC biosensor was applied in a boutique screen of kinase inhibitors, which revealed six compounds to induce conformational closure. The XTC approach demonstrates new potential for assays targeting conformational changes in key proteins in disease and biology.


Assuntos
Técnicas Biossensoriais/métodos , Cisteína/química , Quinases da Família src/química , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Corantes/química , Corantes/metabolismo , Cisteína/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Domínios de Homologia de src/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa