Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Nat Immunol ; 20(4): 493-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833792

RESUMO

Interferon-stimulated genes (ISGs) form the backbone of the innate immune system and are important for limiting intra- and intercellular viral replication and spread. We conducted a mass-spectrometry-based survey to understand the fundamental organization of the innate immune system and to explore the molecular functions of individual ISGs. We identified interactions between 104 ISGs and 1,401 cellular binding partners engaging in 2,734 high-confidence interactions. 90% of these interactions are unreported so far, and our survey therefore illuminates a far wider activity spectrum of ISGs than is currently known. Integration of the resulting ISG-interaction network with published datasets and functional studies allowed us to identify regulators of immunity and processes related to the immune system. Given the extraordinary robustness of the innate immune system, this ISG network may serve as a blueprint for therapeutic targeting of cellular systems to efficiently fight viral infections.


Assuntos
Imunidade Inata , Interferons/fisiologia , Mapeamento de Interação de Proteínas , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Expressão Gênica , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/genética , Espectrometria de Massas , Receptores CCR4/metabolismo , Receptores de Peptídeos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo
2.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologia
3.
Nature ; 597(7875): 268-273, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320609

RESUMO

SARS-CoV-2 spike mRNA vaccines1-3 mediate protection from severe disease as early as ten days after prime vaccination3, when neutralizing antibodies are hardly detectable4-6. Vaccine-induced CD8+ T cells may therefore be the main mediators of protection at this early stage7,8. The details of their induction, comparison to natural infection, and association with other arms of vaccine-induced immunity remain, however, incompletely understood. Here we show on a single-epitope level that a stable and fully functional CD8+ T cell response is vigorously mobilized one week after prime vaccination with bnt162b2, when circulating CD4+ T cells and neutralizing antibodies are still weakly detectable. Boost vaccination induced a robust expansion that generated highly differentiated effector CD8+ T cells; however, neither the functional capacity nor the memory precursor T cell pool was affected. Compared with natural infection, vaccine-induced early memory T cells exhibited similar functional capacities but a different subset distribution. Our results indicate that CD8+ T cells are important effector cells, are expanded in the early protection window after prime vaccination, precede maturation of other effector arms of vaccine-induced immunity and are stably maintained after boost vaccination.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162 , Linfócitos T CD4-Positivos/imunologia , COVID-19/virologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Humanos , Imunização Secundária , Memória Imunológica/imunologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Vacinas de mRNA
4.
PLoS Biol ; 21(7): e3002182, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410798

RESUMO

The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and ß1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and ß-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and ß1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.


Assuntos
Quirópteros , Vírus da Influenza A , Animais , Humanos , Aminoácidos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA-DR/metabolismo , Antígenos HLA
5.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470155

RESUMO

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Empacotamento do Genoma Viral , Animais , Cães , Humanos , Substituição de Aminoácidos , Linhagem Celular , Genoma Viral , Vírus da Influenza A/química , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Lisina/genética , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismo , Mutação , Eletricidade Estática
6.
Nature ; 567(7746): 109-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787439

RESUMO

Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats1,2. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan1,3,4, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.


Assuntos
Quirópteros/virologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Especificidade de Hospedeiro , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Zoonoses/imunologia , Zoonoses/virologia , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Galinhas/genética , Galinhas/imunologia , Quirópteros/genética , Quirópteros/imunologia , Quirópteros/metabolismo , Feminino , Perfilação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/imunologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Sistema Respiratório/virologia , Suínos/genética , Suínos/imunologia , Tropismo Viral/genética , Tropismo Viral/imunologia , Replicação Viral , Zoonoses/genética , Zoonoses/metabolismo
7.
Nucleic Acids Res ; 51(12): 6479-6494, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224537

RESUMO

A fundamental step in the influenza A virus (IAV) replication cycle is the coordinated packaging of eight distinct genomic RNA segments (i.e. vRNAs) into a viral particle. Although this process is thought to be controlled by specific vRNA-vRNA interactions between the genome segments, few functional interactions have been validated. Recently, a large number of potentially functional vRNA-vRNA interactions have been detected in purified virions using the RNA interactome capture method SPLASH. However, their functional significance in coordinated genome packaging remains largely unclear. Here, we show by systematic mutational analysis that mutant A/SC35M (H7N7) viruses lacking several prominent SPLASH-identified vRNA-vRNA interactions involving the HA segment package the eight genome segments as efficiently as the wild-type virus. We therefore propose that the vRNA-vRNA interactions identified by SPLASH in IAV particles are not necessarily critical for the genome packaging process, leaving the underlying molecular mechanism elusive.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Empacotamento do Genoma Viral , Humanos , Genoma Viral , Vírus da Influenza A Subtipo H7N7/fisiologia , Influenza Humana/virologia , RNA Viral/metabolismo , Montagem de Vírus
8.
EMBO J ; 39(21): e103476, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985719

RESUMO

Organoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three-dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self-organization of FACS-sorted bronchioalveolar stem cells (BASCs) upon co-culture with lung-resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single-cell RNA sequencing and fluorescence as well as electron microscopic phenotyping. Additionally, BALOs support engraftment and maintenance of the cellular phenotype of injected tissue-resident macrophages. We also demonstrate that BALOs recapitulate lung developmental defects after knockdown of a critical regulatory gene, and permit modeling of viral infection. We conclude that the BALO model enables reconstruction of the epithelial-mesenchymal-myeloid unit of the distal lung, thereby opening numerous new avenues to study lung development, infection, and regenerative processes in vitro.


Assuntos
Pneumopatias/patologia , Pulmão/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Células-Tronco/fisiologia , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células Endoteliais/citologia , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Células Epiteliais/citologia , Fibroblastos , Humanos , Pulmão/citologia , Células-Tronco Mesenquimais , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Organogênese/fisiologia , Organoides/citologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Regeneração/genética , Regeneração/fisiologia
9.
J Virol ; 97(8): e0038823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37540019

RESUMO

The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.


Assuntos
Quirópteros , Vírus da Influenza A , Animais , Amantadina/farmacologia , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/metabolismo , Prótons
10.
J Virol ; 97(10): e0107623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37811996

RESUMO

IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Empacotamento do Genoma Viral , Montagem de Vírus , Genoma Viral , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H7N7/genética , RNA Viral/genética , Vírion/genética
11.
EMBO Rep ; 23(2): e53865, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927793

RESUMO

The ongoing COVID-19 pandemic and the emergence of new SARS-CoV-2 variants of concern (VOCs) requires continued development of effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nbs) specific for the receptor-binding domain (RBD) of SARS-CoV-2. Taking advantage of detailed epitope mapping, we generate two biparatopic Nbs (bipNbs) targeting a conserved epitope outside and two different epitopes inside the RBD:ACE2 interface. Both bipNbs bind all currently circulating VOCs with high affinities and are capable to neutralize cellular infection with VOC B.1.351 (Beta) and B.1.617.2 (Delta) in vitro. To assess if the bipNbs NM1267 and NM1268 confer protection against SARS-CoV-2 infection in vivo, human ACE2 transgenic mice are treated intranasally before infection with a lethal dose of SARS-CoV-2 B.1, B.1.351 (Beta) or B.1.617.2 (Delta). Nb-treated mice show significantly reduced disease progression and increased survival rates. Histopathological analyses further reveal a drastically reduced viral load and inflammatory response in lungs. These data suggest that both bipNbs are broadly active against a variety of emerging SARS-CoV-2 VOCs and represent easily applicable drug candidates.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Camundongos , Camundongos Transgênicos , Pandemias , SARS-CoV-2 , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus
12.
Nucleic Acids Res ; 50(16): 9023-9038, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35993811

RESUMO

The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA-RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA-RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA-RNA interactions. We speculate that identifying such functional intersegmental RNA-RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Empacotamento do Genoma Viral , Montagem de Vírus/genética , Vírus da Influenza A/genética , RNA Viral/genética , Genoma Viral/genética
13.
Eur J Immunol ; 52(9): 1419-1430, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35551651

RESUMO

Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.


Assuntos
Síndromes de Imunodeficiência , Receptores de Reconhecimento de Padrão , Imunidade Adaptativa , Citocinas/metabolismo , Humanos , Imunidade Inata
14.
EMBO Rep ; 22(10): e52823, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34397140

RESUMO

Interferon (IFN) induction of IFN-stimulated genes (ISGs) creates a formidable protective antiviral state. However, loss of appropriate control mechanisms can result in constitutive pathogenic ISG upregulation. Here, we used genome-scale loss-of-function screening to establish genes critical for IFN-induced transcription, identifying all expected members of the JAK-STAT signaling pathway and a previously unappreciated epigenetic reader, bromodomain-containing protein 9 (BRD9), the defining subunit of non-canonical BAF (ncBAF) chromatin-remodeling complexes. Genetic knockout or small-molecule-mediated degradation of BRD9 limits IFN-induced expression of a subset of ISGs in multiple cell types and prevents IFN from exerting full antiviral activity against several RNA and DNA viruses, including influenza virus, human immunodeficiency virus (HIV1), and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at the level of transcription, and its IFN-triggered proximal association with the ISG transcriptional activator, STAT2, suggests a functional localization at selected ISG promoters. Furthermore, BRD9 relies on its intact acetyl-binding bromodomain and unique ncBAF scaffolding interaction with GLTSCR1/1L to promote IFN action. Given its druggability, BRD9 is an attractive target for dampening ISG expression under certain autoinflammatory conditions.


Assuntos
Antivirais , Interferons , Antivirais/farmacologia , Expressão Gênica , Humanos , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/genética
15.
PLoS Pathog ; 16(8): e1008775, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866218

RESUMO

Small RNA viruses only have a very limited coding capacity, thus most viral proteins have evolved to fulfill multiple functions. The highly conserved matrix protein 1 (M1) of influenza A viruses is a prime example for such a multifunctional protein, as it acts as a master regulator of virus replication whose different functions have to be tightly regulated. The underlying mechanisms, however, are still incompletely understood. Increasing evidence points towards an involvement of posttranslational modifications in the spatio-temporal regulation of M1 functions. Here, we analyzed the role of M1 tyrosine phosphorylation in genuine infection by using recombinant viruses expressing M1 phosphomutants. Presence of M1 Y132A led to significantly decreased viral replication compared to wildtype and M1 Y10F. Characterization of phosphorylation dynamics by mass spectrometry revealed the presence of Y132 phosphorylation in M1 incorporated into virions that is most likely mediated by membrane-associated Janus kinases late upon infection. Molecular dynamics simulations unraveled a potential phosphorylation-induced exposure of the positively charged linker domain between helices 4 and 5, supposably acting as interaction platform during viral assembly. Consistently, M1 Y132A showed a defect in lipid raft localization due to reduced interaction with viral HA protein resulting in a diminished structural stability of viral progeny and the formation of filamentous particles. Importantly, reduced M1-RNA binding affinity resulted in an inefficient viral genome incorporation and the production of non-infectious virions that interferes with virus pathogenicity in mice. This study advances our understanding of the importance of dynamic phosphorylation as a so far underestimated level of regulation of multifunctional viral proteins and emphasizes the potential feasibility of targeting posttranslational modifications of M1 as a novel antiviral intervention.


Assuntos
Vírus da Influenza A/metabolismo , Mutação de Sentido Incorreto , Proteínas da Matriz Viral/metabolismo , Células A549 , Substituição de Aminoácidos , Animais , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas da Matriz Viral/genética
16.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872655

RESUMO

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Doenças da Imunodeficiência Primária/imunologia , Viroses/genética , Antígenos de Neoplasias/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/imunologia , Masculino , Doenças da Imunodeficiência Primária/diagnóstico por imagem , Doenças da Imunodeficiência Primária/genética , Viroses/diagnóstico por imagem , Viroses/imunologia
17.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32522852

RESUMO

Schmallenberg virus (SBV) is an insect-transmitted orthobunyavirus that can cause abortions and congenital malformations in the offspring of ruminants. Even though the two viral surface glycoproteins Gn and Gc are involved in host cell entry, the specific cellular receptors of SBV are currently unknown. Using genome-wide CRISPR-Cas9 forward screening, we identified 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 (PAPST1) as an essential factor for SBV infection. PAPST1 is a sulfotransferase involved in heparan sulfate proteoglycan synthesis encoded by the solute carrier family 35 member B2 gene (SLC35B2). SBV cell surface attachment and entry were largely reduced upon the knockout of SLC35B2, whereas the reconstitution of SLC35B2 in these cells fully restored their susceptibility to SBV infection. Furthermore, treatment of cells with heparinase diminished infection with SBV, confirming that heparan sulfate plays an important role in cell attachment and entry, although to various degrees, heparan sulfate was also found to be important to initiate infection by two other bunyaviruses, La Crosse virus and Rift Valley fever virus. Thus, PAPST1-triggered synthesis of cell surface heparan sulfate is required for the efficient replication of SBV and other bunyaviruses.IMPORTANCE SBV is a newly emerging orthobunyavirus (family Peribunyaviridae) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2, as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.


Assuntos
Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/virologia , Sistemas CRISPR-Cas , Orthobunyavirus/genética , Orthobunyavirus/fisiologia , Animais , Bunyaviridae , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Europa (Continente) , Técnicas de Inativação de Genes , Células HEK293 , Heparitina Sulfato/metabolismo , Humanos , Gado , Glicoproteínas de Membrana/genética , Orthobunyavirus/patogenicidade , Vírus da Febre do Vale do Rift , Transportadores de Sulfato/metabolismo , Sulfotransferases/metabolismo , Células Vero , Ligação Viral
18.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463968

RESUMO

The genome of influenza A virus is organized into eight ribonucleoproteins, each composed of a distinct RNA segment bound by the viral polymerase and oligomeric viral nucleoprotein. Packaging sequences unique to each RNA segment together with specific nucleoprotein amino acids are thought to ensure the precise incorporation of these eight ribonucleoproteins into single virus particles, and yet the underlying interaction network remains largely unexplored. We show here that the genome packaging mechanism of an H7N7 subtype influenza A virus widely tolerates the mutation of individual packaging sequences in three different RNA segments. However, combinations of these modified RNA segments cause distinct genome packaging defects, marked by the absence of specific RNA segment subsets from the viral particles. Furthermore, we find that combining a single mutated packaging sequence with sets of specific nucleoprotein amino acid substitutions greatly impairs the viral genome packaging process. Along with previous reports, our data propose that influenza A virus uses a redundant and plastic network of RNA-RNA and potentially RNA-nucleoprotein interactions to coordinately incorporate its segmented genome into virions.IMPORTANCE The genome of influenza A virus is organized into eight viral ribonucleoproteins (vRNPs); this provides evolutionary advantages but complicates genome packaging. Although it has been shown that RNA packaging sequences and specific amino acids in the viral nucleoprotein (NP), both components of each vRNP, ensure selective packaging of one copy of each vRNP per virus particle, the required RNA-RNA and RNA-NP interactions remain largely elusive. We identified that the genome packaging mechanism tolerates the mutation of certain individual RNA packaging sequences, while their combined mutation provokes distinct genome packaging defects. Moreover, we found that seven specific amino acid substitutions in NP impair the function of RNA packaging sequences and that this defect is partially restored by another NP amino acid change. Collectively, our data indicate that packaging of the influenza A virus genome is controlled by a redundant and plastic network of RNA/protein interactions, which may facilitate natural reassortment processes.


Assuntos
Vírus da Influenza A Subtipo H7N7/genética , Orthomyxoviridae/genética , Montagem de Vírus/genética , Animais , Cães , Genoma Viral/genética , Células HEK293 , Humanos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Nucleoproteínas/metabolismo , RNA Viral/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Vírion/genética
19.
J Virol ; 93(2)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30355693

RESUMO

To cross the human species barrier, influenza A viruses (IAV) of avian origin have to overcome the interferon-induced host restriction factor MxA by acquiring distinct mutations in their nucleoprotein (NP). We recently demonstrated that North American classical swine IAV are able to partially escape MxA restriction. Here we investigated whether the Eurasian avian-like swine IAV lineage currently circulating in European swine would likewise evade restriction by human MxA. We found that the NP of the influenza virus isolate A/Swine/Belzig/2/2001 (Belzig-NP) exhibits increased MxA escape, similar in extent to that with human IAV NPs. Mutational analysis revealed that the MxA escape mutations in Belzig-NP differ from the known MxA resistance cluster of the North American classical swine lineage and human-derived IAV NPs. A mouse-adapted avian IAV of the H7N7 subtype encoding Belzig-NP showed significantly greater viral growth in both MxA-expressing cells and MxA-transgenic mice than control viruses lacking the MxA escape mutations. Similarly, the growth of the recombinant Belzig virus was only marginally affected in MxA-expressing cells and MxA-transgenic mice, in contrast to that of Belzig mutant viruses lacking MxA escape mutations in the NP. Phylogenetic analysis of the Eurasian avian-like swine IAV revealed that the NP amino acids required for MxA escape were acquired successively and were maintained after their introduction. Our results suggest that the circulation of IAV in the swine population can result in the selection of NP variants with a high degree of MxA resistance, thereby increasing the zoonotic potential of these viruses. IMPORTANCE The human MxA protein efficiently blocks the replication of IAV from nonhuman species. In rare cases, however, these IAV overcome the species barrier and become pandemic. All known pandemic viruses have acquired and maintained MxA escape mutations in the viral NP and thus are not efficiently controlled by MxA. Intriguingly, partial MxA resistance can also be acquired in other hosts that express antivirally active Mx proteins, such as swine. To perform a risk assessment of IAV circulating in the European swine population, we analyzed the degree of MxA resistance of Eurasian avian-like swine IAV. Our data demonstrate that these viruses carry formerly undescribed Mx resistance mutations in the NP that mediate efficient escape from human MxA. We conclude that Eurasian avian-like swine IAV possess substantial zoonotic potential.


Assuntos
Vírus da Influenza A/crescimento & desenvolvimento , Mutação , Proteínas de Resistência a Myxovirus/genética , Infecções por Orthomyxoviridae/veterinária , Proteínas de Ligação a RNA/genética , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Animais , Ásia , Aves , Linhagem Celular , Europa (Continente) , Evolução Molecular , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/virologia , Filogenia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Suínos , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa