Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Genome Res ; 34(4): 606-619, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38589251

RESUMO

Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence, genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and the subsequent divergence beyond recognition of rearrangements become the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence but at a slower pace than that of rearrangements. We hypothesize that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.


Assuntos
Eucalyptus , Evolução Molecular , Genoma de Planta , Eucalyptus/genética , Sintenia , Rearranjo Gênico , Filogenia , Cromossomos de Plantas/genética , Variação Genética
2.
PLoS Genet ; 20(3): e1011207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498573

RESUMO

Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.


Assuntos
Basidiomycota , Grão Comestível , Grão Comestível/genética , Basidiomycota/genética , Genômica , Genoma Fúngico/genética , Reprodução , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797414

RESUMO

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Assuntos
Pesquisadores , Relatório de Pesquisa , Humanos , Poder Psicológico
4.
New Phytol ; 241(6): 2621-2636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282212

RESUMO

Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.


Assuntos
Melhoramento Vegetal , Protoplastos , Virulência/genética , Morte Celular , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética
5.
Nature ; 563(7733): E30, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333630

RESUMO

In Extended Data Fig. 5d of this Letter, the blots for anti-pS612 and anti-BAK1 were inadvertently duplicated. This figure has been corrected online.

6.
Nature ; 561(7722): 248-252, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177827

RESUMO

Multicellular organisms use cell-surface receptor kinases to sense and process extracellular signals. Many plant receptor kinases are activated by the formation of ligand-induced complexes with shape-complementary co-receptors1. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat receptor kinases (LRR-RKs) to control immunity, growth and development2. Here we report key regulatory events that control the function of BAK1 and, more generally, LRR-RKs. Through a combination of phosphoproteomics and targeted mutagenesis, we identified conserved phosphosites that are required for the immune function of BAK1 in Arabidopsis thaliana. Notably, these phosphosites are not required for BAK1-dependent brassinosteroid-regulated growth. In addition to revealing a critical role for the phosphorylation of the BAK1 C-terminal tail, we identified a conserved tyrosine phosphosite that may be required for the function of the majority of Arabidopsis LRR-RKs, and which separates them into two distinct functional classes based on the presence or absence of this tyrosine. Our results suggest a phosphocode-based dichotomy of BAK1 function in plant signalling, and provide insights into receptor kinase activation that have broad implications for our understanding of how plants respond to their changing environment.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Arabidopsis/química , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Ligantes , Modelos Moleculares , Fosforilação , Fosfotirosina/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/imunologia
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531323

RESUMO

Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/fisiologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Expressão Gênica , Imunidade Inata/genética , Ligantes , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia
8.
Mol Ecol ; 32(6): 1271-1287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35810343

RESUMO

Synteny, the ordering of sequences within homologous chromosomes, must be maintained within the genomes of sexually reproducing species for the sharing of alleles and production of viable, reproducing offspring. However, when the genomes of closely related species are compared, a loss of synteny is often observed. Unequal homologous recombination is the primary mechanism behind synteny loss, occurring more often in transposon rich regions, and resulting in the formation of chromosomal rearrangements. To examine patterns of synteny among three closely related, interbreeding, and wild Eucalyptus species, we assembled their genomes using long-read DNA sequencing and de novo assembly. We identify syntenic and rearranged regions between these genomes and estimate that ~48% of our genomes remain syntenic while ~36% is rearranged. We observed that rearrangements highly fragment microsynteny. Our results suggest that synteny between these species is primarily lost through small-scale rearrangements, not through sequence loss, gain, or sequence divergence. Further examination of identified rearrangements suggests that rearrangements may be altering the phenotypes of Eucalyptus species. Our study also underscores that the use of single reference genomes in genomic variation studies could lead to reference bias, especially given the scale at which we show potentially adaptive loci have highly diverged, deleted, duplicated and/or rearranged. This study provides an unbiased framework to look at potential speciation and adaptive loci among a rapidly radiating foundation species of woodland trees that are free from selective breeding seen in most crop species.


Assuntos
Eucalyptus , Eucalyptus/genética , Genoma , Sintenia/genética , Cromossomos , Análise de Sequência de DNA/métodos
9.
J Exp Bot ; 74(1): 1-6, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563102

RESUMO

In the summer of 2021, we held a community workshop at the International Congress of Arabidopsis Research (ICAR) aimed at early career researchers and focused on values-based lab leadership. Here, we elaborate on ideas emerging from the workshop that we hope will allow current and future group leaders to reflect on and adjust to the rapidly evolving nature of the academic scientific enterprise.


Assuntos
Liderança , Fortalecimento Institucional , Mentores , Pesquisa/tendências
10.
Epidemiol Infect ; 151: e30, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786292

RESUMO

The COVID-19 pandemic has presented a unique opportunity to understand how real-time pathogen genomics can be used for large-scale outbreak investigations. On 12 August 2021, the Australian Capital Territory (ACT) detected an incursion of the SARS-CoV-2 Delta (B.1.617.2) variant. Prior to this date, SARS-CoV-2 had been eliminated locally since 7 July 2020. Several public health interventions were rapidly implemented in response to the incursion, including a territory-wide lockdown and comprehensive contact tracing. The ACT has not previously used pathogen genomics at a population level in an outbreak response; therefore, this incursion also presented an opportunity to investigate the utility of genomic sequencing to support contact tracing efforts in the ACT. Sequencing of >75% of the 1793 laboratory-confirmed cases during the 3 months following the initial notification identified at least 13 independent incursions with onwards spread in the community. Stratification of cases by genomic cluster revealed that distinct cohorts were affected by the different incursions. Two incursions resulted in most of the community transmission during the study period, with persistent transmission in vulnerable sections of the community. Ultimately, both major incursions were successfully mitigated through public health interventions, including COVID-19 vaccines. The high rates of SARS-CoV-2 sequencing in the ACT and the relatively small population size facilitated detailed investigations of the patterns of virus transmission, revealing insights beyond those gathered from traditional contact tracing alone. Genomic sequencing was critical to disentangling complex transmission chains to target interventions appropriately.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Saúde Pública , Território da Capital Australiana , Vacinas contra COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Austrália
11.
PLoS Biol ; 17(2): e3000151, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789895

RESUMO

Peer-reviewed journal publication is the main means for academic researchers in the life sciences to create a permanent public record of their work. These publications are also the de facto currency for career progress, with a strong link between journal brand recognition and perceived value. The current peer-review process can lead to long delays between submission and publication, with cycles of rejection, revision, and resubmission causing redundant peer review. This situation creates unique challenges for early career researchers (ECRs), who rely heavily on timely publication of their work to gain recognition for their efforts. Today, ECRs face a changing academic landscape, including the increased interdisciplinarity of life sciences research, expansion of the researcher population, and consequent shifts in employer and funding demands. The publication of preprints, publicly available scientific manuscripts posted on dedicated preprint servers prior to journal-managed peer review, can play a key role in addressing these ECR challenges. Preprinting benefits include rapid dissemination of academic work, open access, establishing priority or concurrence, receiving feedback, and facilitating collaborations. Although there is a growing appreciation for and adoption of preprints, a minority of all articles in life sciences and medicine are preprinted. The current low rate of preprint submissions in life sciences and ECR concerns regarding preprinting need to be addressed. We provide a perspective from an interdisciplinary group of ECRs on the value of preprints and advocate their wide adoption to advance knowledge and facilitate career development.


Assuntos
Revisão da Pesquisa por Pares/métodos , Pré-Publicações como Assunto , Pesquisadores/psicologia , Pesquisa Biomédica , Mobilidade Ocupacional , Humanos , Publicações Periódicas como Assunto
12.
BMC Biol ; 19(1): 203, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526021

RESUMO

BACKGROUND: Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. RESULTS: We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5' uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5' adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. CONCLUSIONS: We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


Assuntos
Basidiomycota , Metilação de DNA , Puccinia , Basidiomycota/genética , Centrômero , Metilação de DNA/genética , Elementos de DNA Transponíveis , Instabilidade Genômica , Humanos , Doenças das Plantas/genética , Puccinia/patogenicidade , RNA
13.
Phytopathology ; 111(1): 49-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33200962

RESUMO

Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.


Assuntos
Ecossistema , Doenças das Plantas , Adaptação Fisiológica , Produtos Agrícolas , Florestas
14.
Mol Plant Microbe Interact ; 33(5): 724-726, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096690

RESUMO

Macrophomina phaseolina is a soil-borne phytopathogenic fungus that causes charcoal rot in several plant species, including sorghum. We constructed a draft genome of M. phaseolina isolate BRIP 70780a from sorghum, using long-read native DNA from MinION sequencing, which was error-corrected using short-read Illumina MiSeq reads. The draft genome, consisting of 22 contigs with an N50 of 4,257,441 bp, 99.3% complete benchmarking universal single-copy orthologs, and 14,471 genes, is a valuable resource to aid future studies in population genomics and molecular diagnostic marker development for rapid detection of the pathogen.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Sorghum/microbiologia , Grão Comestível/microbiologia
15.
Med Mycol ; 58(5): 650-660, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758176

RESUMO

The advent of next generation sequencing technologies has enabled the characterization of the genetic content of entire communities of organisms, including those in clinical specimens, without prior culturing. The MinION from Oxford Nanopore Technologies offers real-time, direct sequencing of long DNA fragments directly from clinical samples. The aim of this study was to assess the ability of unbiased, genome-wide, long-read, shotgun sequencing using MinION to identify Pneumocystis jirovecii directly from respiratory tract specimens and to characterize the associated mycobiome. Pneumocystis pneumonia (PCP) is a life-threatening fungal disease caused by P. jirovecii. Currently, the diagnosis of PCP relies on direct microscopic or real-time quantitative polymerase chain reaction (PCR) examination of respiratory tract specimens, as P. jirovecii cannot be cultured readily in vitro. P. jirovecii DNA was detected in bronchoalveolar lavage (BAL) and induced sputum (IS) samples from three patients with confirmed PCP. Other fungi present in the associated mycobiome included known human pathogens (Aspergillus, Cryptococcus, Pichia) as well as commensal species (Candida, Malassezia, Bipolaris). We have established optimized sample preparation conditions for the generation of high-quality data, curated databases, and data analysis tools, which are key to the application of long-read MinION sequencing leading to a fundamental new approach in fungal diagnostics.


Assuntos
Metagenômica/métodos , Pneumocystis carinii/classificação , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/diagnóstico , Líquido da Lavagem Broncoalveolar/microbiologia , DNA Fúngico , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Micobioma/genética , Nanoporos , Pneumonia por Pneumocystis/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/microbiologia , Sensibilidade e Especificidade , Escarro/microbiologia
16.
Plant Cell ; 28(8): 1945-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401545

RESUMO

Chitin is a key component of fungal cell walls and a potent inducer of innate immune responses. Consequently, fungi may secrete chitin-binding lectins, such as the Cf-Avr4 effector protein from the tomato pathogen Cladosporium fulvum, to shield chitin from host-derived chitinases during infection. Homologs of Cf-Avr4 are found throughout Dothideomycetes, and despite their modest primary sequence identity, many are perceived by the cognate tomato immune receptor Cf-4. Here, we determined the x-ray crystal structure of Pf-Avr4 from the tomato pathogen Pseudocercospora fuligena, thus providing a three-dimensional model of an Avr4 effector protein. In addition, we explored structural, biochemical, and functional aspects of Pf-Avr4 and Cf-Avr4 to further define the biology of core effector proteins and outline a conceptual framework for their pleiotropic recognition by single immune receptors. We show that Cf-Avr4 and Pf-Avr4 share functional specificity in binding (GlcNAc)6 and in providing protection against plant- and microbial-derived chitinases, suggesting a broader role beyond deregulation of host immunity. Furthermore, structure-guided site-directed mutagenesis indicated that residues in Pf-Avr4 important for binding chitin do not directly influence recognition by Cf-4 and further suggested that the property of recognition is structurally separated or does not fully overlap with the virulence function of the effector.


Assuntos
Solanum lycopersicum/metabolismo , Quitina/metabolismo , Cladosporium/patogenicidade , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
17.
BMC Genomics ; 19(1): 977, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594129

RESUMO

BACKGROUND: Chloroplasts are organelles that conduct photosynthesis in plant and algal cells. The information chloroplast genome contained is widely used in agriculture and studies of evolution and ecology. Correctly assembling chloroplast genomes can be challenging because the chloroplast genome contains a pair of long inverted repeats (10-30 kb). Typically, it is simply assumed that the gross structure of the chloroplast genome matches the most commonly observed structure of two single-copy regions separated by a pair of inverted repeats. The advent of long-read sequencing technologies should remove the need to make this assumption by providing sufficient information to completely span the inverted repeat regions. Yet, long-reads tend to have higher error rates than short-reads, and relatively little is known about the best way to combine long- and short-reads to obtain the most accurate chloroplast genome assemblies. Using Eucalyptus pauciflora, the snow gum, as a test case, we evaluated the effect of multiple parameters, such as different coverage of long-(Oxford nanopore) and short-(Illumina) reads, different long-read lengths, different assembly pipelines, with a view to determining the most accurate and efficient approach to chloroplast genome assembly. RESULTS: Hybrid assemblies combining at least 20x coverage of both long-reads and short-reads generated a single contig spanning the entire chloroplast genome with few or no detectable errors. Short-read-only assemblies generated three contigs (the long single copy, short single copy and inverted repeat regions) of the chloroplast genome. These contigs contained few single-base errors but tended to exclude several bases at the beginning or end of each contig. Long-read-only assemblies tended to create multiple contigs with a much higher single-base error rate. The chloroplast genome of Eucalyptus pauciflora is 159,942 bp, contains 131 genes of known function. CONCLUSIONS: Our results suggest that very accurate assemblies of chloroplast genomes can be achieved using a combination of at least 20x coverage of long- and short-reads respectively, provided that the long-reads contain at least ~5x coverage of reads longer than the inverted repeat region. We show that further increases in coverage give little or no improvement in accuracy, and that hybrid assemblies are more accurate than long-read-only or short-read-only assemblies.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Sequências Repetidas Invertidas , Eucalyptus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
20.
PLoS Pathog ; 11(3): e1004809, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25821973

RESUMO

Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.


Assuntos
Proteínas de Arabidopsis/biossíntese , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Reconhecimento de Padrão/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Transdução de Sinais , Proteínas de Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Reconhecimento de Padrão/genética , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa