Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002363

RESUMO

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Sobrevivência Celular , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892005

RESUMO

Skeletal muscle regeneration entails a multifaceted process marked by distinct phases, encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges upon precise intercellular communication orchestrated by diverse cell types and signaling molecules. Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured muscle provokes the release of EVs originating from myofibers and various cell types, including mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regeneration. This review consolidates the current understanding on EVs released by cells and damaged tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new insights on potential therapeutic interventions to mitigate muscle-related pathologies.


Assuntos
Vesículas Extracelulares , Músculo Esquelético , Regeneração , Vesículas Extracelulares/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Comunicação Celular
3.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238549

RESUMO

Sarcopenia that occurs with advancing age is characterized by a gradual loss of muscle protein component due to the activation of catabolic pathways, increased level of inflammation, and mitochondrial dysfunction. Experimental evidence demonstrates that several physio-pathological processes involved in the onset of sarcopenia may be counteracted by the intake of specific amino acids or antioxidant molecules, suggesting that diet may represent an effective strategy for improving the anabolic response of muscle during aging. The non-essential amino acid taurine is highly expressed in several mammalian tissues, including skeletal muscle where it is involved in the ion channel regulation, in the modulation of intracellular calcium concentration, and where it plays an important role as an antioxidant and anti-inflammatory factor. Here, with the purpose to reproduce the chronic low-grade inflammation characteristics of senescent muscle in an in vitro system, we exploited the role of Tumor Necrosis Factor α (TNF) and we analyzed the effect of taurine in the modulation of different signaling pathways known to be dysregulated in sarcopenia. We demonstrated that the administration of high levels of taurine in myogenic L6 cells stimulates the differentiation process by downregulating the expression of molecules involved in inflammatory pathways and modulating processes such as autophagy and apoptosis. Although further studies are currently ongoing in our laboratory to better elucidate the molecular mechanisms responsible for the positive effect of taurine on myogenic differentiation, this study suggests that taurine supplementation may represent a strategy to delay the loss of mass and functionality characteristic of senescent muscles.


Assuntos
Inflamação/genética , Sarcopenia/genética , Taurina/genética , Fator de Necrose Tumoral alfa/genética , Envelhecimento/genética , Envelhecimento/patologia , Aminoácidos/genética , Animais , Antioxidantes/metabolismo , Autofagia/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Sarcopenia/patologia , Transdução de Sinais/genética , Taurina/metabolismo
4.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212946

RESUMO

Overactivation of the c-MET/HGF system is a feature of many cancers. We previously reported that type II testicular germ cell tumor (TGCT) cells express the c-MET receptor, forming non-seminomatous lesions that are more positive compared with seminomatous ones. Notably, we also demonstrated that NT2D1 non-seminomatous cells (derived from an embryonal carcinoma lesion) increase their proliferation, migration, and invasion in response to HGF. Herein, we report that HGF immunoreactivity is more evident in the microenvironment of embryonal carcinoma biopsies with respect to seminomatous ones, indicating a tumor-dependent modulation of the testicular niche. PI3K/AKT is one of the signaling pathways triggered by HGF through the c-MET activation cascade. Herein, we demonstrated that phospho-AKT increases in NT2D1 cells after HGF stimulation. Moreover, we found that this pathway is involved in HGF-dependent NT2D1 cell proliferation, migration, and invasion, since the co-administration of the PI3K inhibitor LY294002 together with HGF abrogates these responses. Notably, the inhibition of endogenous PI3K affects collective cell migration but does not influence proliferation or chemotactic activity. Surprisingly, LY294002 administered without the co-administration of HGF increases cell invasion at levels comparable to the HGF-administered samples. This paradoxical result highlights the role of the testicular microenvironment in the modulation of cellular responses and stimulates the study of the testicular secretome in cancer lesions.


Assuntos
Carcinoma Embrionário/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Testiculares/metabolismo , Carcinoma Embrionário/genética , Carcinoma Embrionário/patologia , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Testiculares/genética
5.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461843

RESUMO

Arginine-vasopressin (AVP) promotes muscle differentiation, hypertrophy, and regeneration through the combined activation of the calcineurin and Calcium/Calmodulin-dependent Protein Kinase (CaMK) pathways. The AVP system is impaired in several neuromuscular diseases, suggesting that AVP may act as a physiological factor in skeletal muscle. Since the Phosphoinositide 3-kinases/Protein Kinase B/mammalian Target Of Rapamycin (PI3K/Akt/mTOR) signaling plays a significant role in regulating muscle mass, we evaluated its role in the AVP myogenic effect. In L6 cells AKT1 expression was knocked down, and the AVP-dependent expression of mTOR and Forkhead box O3 (FoxO) was analyzed by Western blotting. The effect of the PI3K inhibitor LY294002 was evaluated by cellular and molecular techniques. Akt knockdown hampered the AVP-dependent mTOR expression while increased the levels of FoxO transcription factor. LY294002 treatment inhibited the AVP-dependent expression of Myocyte Enhancer Factor-2 (MEF2) and myogenin and prevented the nuclear translocation of MEF2. LY294002 also repressed the AVP-dependent nuclear export of histone deacetylase 4 (HDAC4) interfering with the formation of multifactorial complexes on the myogenin promoter. We demonstrate that the PI3K/Akt pathway is essential for the full myogenic effect of AVP and that, by targeting this pathway, one may highlight novel strategies to counteract muscle wasting in aging or neuromuscular disorders.


Assuntos
Diferenciação Celular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vasopressinas/farmacologia , Animais , Linhagem Celular , Cromonas/farmacologia , Proteína Forkhead Box O3/metabolismo , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Morfolinas/farmacologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Ratos , Serina-Treonina Quinases TOR/metabolismo
6.
Cancer Cell Int ; 18: 136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214378

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor in which cancer cells with stem cell-like features, called cancer stem cells (CSCs), were identified. Two CSC populations have been previously identified in GBM, one derived from the GBM area called enhanced lesion (GCSCs) and the other one from the brain area adjacent to the tumor margin (PCSCs) that greatly differ in their growth properties and tumor-initiating ability. To date the most effective chemotherapy to treat GBM is represented by alkylating agents such as temozolomide (TMZ), whose activity can be regulated by histone deacetylases (HDACs) inhibitors through the modulation of O6-methylguanine-DNA methyltransferase (MGMT) expression. Levetiracetam (LEV), a relatively new antiepileptic drug, modulates HDAC levels ultimately silencing MGMT, thus increasing TMZ effectiveness. However, an improvement in the therapeutic efficacy of TMZ is needed. METHODS: Cell proliferation was investigated by BrdU cell proliferation assay and by Western Blot analysis of PCNA expression. Apoptosis was evaluated by Western Blot and Immunofluorescence analysis of the cleaved Caspase-3 expression. MGMT and HDAC4 expression was analyzed by Western Blotting and Immunofluorescence. Statistical analysis was performed using the Student's t test and Mann-Whitney test. RESULTS: Here we evaluated the effect of TMZ on the proliferation rate of the IDH-wildtype GCSCs and PCSCs derived from six patients, in comparison with the effects of other drugs such as etoposide, irinotecan and carboplatin. Our results demonstrated that TMZ was less effective compared to the other agents; hence, we verified the possibility to increase the effect of TMZ by combining it with LEV. Here we show that LEV enhances the effect of TMZ on GCSCs proliferation (being less effective on PCSCs) by decreasing MGMT expression, promoting HDAC4 nuclear translocation and activating apoptotic pathway. CONCLUSIONS: Although further studies are needed to determine the exact mechanism by which LEV makes GBM stem cells more  sensitive to TMZ, these results suggest that the clinical therapeutic efficacy of TMZ in GBM might be enhanced by the combined treatment with LEV.

7.
Curr Genomics ; 19(5): 356-369, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065611

RESUMO

Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.

8.
Aging Dis ; 15(2): 517-534, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728580

RESUMO

Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.


Assuntos
Sarcopenia , Semaforinas , Humanos , Junção Neuromuscular/patologia , Músculo Esquelético/patologia , Axônios/patologia , Sarcopenia/patologia
9.
Biogerontology ; 14(3): 273-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666344

RESUMO

Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle. Our study, along with other studies, demonstrated that although the regenerative program can also be impaired by the limited proliferative capacity of satellite cells, this limit is not reached during normal aging, and it is more likely that the restricted muscle repair program in aging is presumably due to missing signals that usually render the damaged muscle a permissive environment for regenerative activity.


Assuntos
Envelhecimento/fisiologia , Proliferação de Células , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Telômero/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
10.
Biomedicines ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509533

RESUMO

c-MET/hepatocyte growth factor (HGF) system deregulation is a well-known feature of malignancy in several solid tumors, and for this reason this system and its pathway have been considered as potential targets for therapeutic purposes. In previous manuscripts we reported c-MET/HGF expression and the role in testicular germ cell tumors (TGCTs) derived cell lines. We demonstrated the key role of c-Src and phosphatidylinositol 3-kinase (PI3K)/AKT adaptors in the HGF-dependent malignant behavior of the embryonal carcinoma cell line NT2D1, finding that the inhibition of these onco-adaptor proteins abrogates HGF triggered responses such as proliferation, migration, and invasion. Expanding on these previous studies, herein we investigated the role of mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) pathways in the HGF-dependent and HGF-independent NT2D1 cells biological responses. To inhibit MAPK/ERK pathways we chose a pharmacological approach, by using U0126 inhibitor, and we analyzed cell proliferation, collective migration, and chemotaxis. The administration of U0126 together with HGF reverts the HGF-dependent activation of cell proliferation but, surprisingly, does not exert the same effect on NT2D1 cell migration. In addition, we found that the use of U0126 alone significantly promotes the acquisition of NT2D1 «migrating phenotype¼, while collective migration of NT2D1 cells was stimulated. Notably, the inhibition of ERK activation in the absence of HGF stimulation resulted in the activation of the AKT-mediated pathway, and this let us speculate that the paradoxical effects obtained by using U0126, which are the increase of collective migration and the acquisition of partial epithelium-mesenchyme transition (pEMT), are the result of compensatory pathways activation. These data highlight how the specific response to pathway inhibitors, should be investigated in depth before setting up therapy.

11.
Cells ; 11(7)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35406771

RESUMO

Genetic and acquired defects of lower motor neurons, peripheral nerves, or skeletal muscle are responsible for several neuromuscular disorders [...].


Assuntos
Doenças Neuromusculares , Junção Neuromuscular , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Doenças Neuromusculares/terapia , Junção Neuromuscular/fisiologia , Nervos Periféricos
12.
Eur J Transl Myol ; 32(1)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35244364

RESUMO

Sergio Adamo prematurely left us on January 7th 2022, just one year after his retirement, leaving his family, friends and colleagues deeply sad and grieving. Sergio was a full Professor of Histology and Embryology at the Sapienza University of Rome. Since the foundation of the Institute of Histology and Embryology more than 50 years ago, he dedicated himself to the institution, research, and teaching with integrity, generosity, and a great sense of teamwork. Sergio's main research interests have been the mechanisms of myogenesis, muscle homeostasis and regeneration under normal and pathological conditions. Most relevant results obtained by Sergio and his collaborators indicate novel functions for the neurohypophyseal hormones, vasopressin and oxytocin, upon striated muscle differentiation, trophism, and homeostasis. Here we like to give the proper tribute to a mentor, a colleague and a sincere friend. He left an indelible mark on the professional and personal lives of all of us and his absence provokes a profound sense of emptiness.

13.
Antioxidants (Basel) ; 11(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624880

RESUMO

Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of catabolic pathways. Physical activity and adequate protein intake are considered effective strategies able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor. Here, we evaluated whether taurine administration in old mice counteracts the physiopathological effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regenerative process by downregulating the inflammatory response and preserving muscle fiber integrity. Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular redox balance, acting as an antioxidant molecule. Although further studies are needed to better elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment allowing an efficient regenerative process and attenuation of the catabolic pathways related to the onset of sarcopenia.

14.
Cells ; 10(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074012

RESUMO

With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.


Assuntos
Envelhecimento/metabolismo , Metilação de DNA , Epigênese Genética , Código das Histonas , Junção Neuromuscular/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo
15.
Cells ; 10(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440812

RESUMO

ALS is a fatal neurodegenerative disease that is associated with muscle atrophy, motoneuron degeneration and denervation. Different mechanisms have been proposed to explain the pathogenesis of the disease; in this context, microRNAs have been described as biomarkers and potential pathogenetic factors for ALS. MyomiRs are microRNAs produced by skeletal muscle, and they play an important role in tissue homeostasis; moreover, they can be released in blood circulation in pathological conditions, including ALS. However, the functional role of myomiRs in muscle denervation has not yet been fully clarified. In this study, we analyze the levels of two myomiRs, namely miR-206 and miR-133a, in skeletal muscle and blood samples of denervated mice, and we demonstrate that surgical denervation reduces the expression of both miR-206 and miR-133a, while miR-206 but not miR-133a is upregulated during the re-innervation process. Furthermore, we quantify the levels of miR-206 and miR-133a in serum samples of two ALS mouse models, characterized by different disease velocities, and we demonstrate a different modulation of circulating myomiRs during ALS disease, according to the velocity of disease progression. Moreover, taking into account surgical and pathological denervation, we describe a different response to increasing amounts of circulating miR-206, suggesting a hormetic effect of miR-206 in relation to changes in neuromuscular communication.


Assuntos
Esclerose Lateral Amiotrófica/patologia , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/cirurgia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Denervação Muscular , Músculo Esquelético/inervação , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
16.
Cells ; 10(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34359985

RESUMO

IL-6 is a pleiotropic cytokine that can exert different and opposite effects. The muscle-induced and transient expression of IL-6 can act in an autocrine or paracrine manner, stimulating anabolic pathways associated with muscle growth, myogenesis, and with regulation of energy metabolism. In contrast, under pathologic conditions, including muscular dystrophy, cancer associated cachexia, aging, chronic inflammatory diseases, and other pathologies, the plasma levels of IL-6 significantly increase, promoting muscle wasting. Nevertheless, the specific physio-pathological role exerted by IL-6 in the maintenance of differentiated phenotype remains to be addressed. The purpose of this study was to define the role of increased plasma levels of IL-6 on muscle homeostasis and the mechanisms contributing to muscle loss. Here, we reported that increased plasma levels of IL-6 promote alteration in muscle growth at early stage of postnatal life and induce muscle wasting by triggering a shift of the slow-twitch fibers toward a more sensitive fast fiber phenotype. These findings unveil a role for IL-6 as a potential biomarker of stunted growth and skeletal muscle wasting.


Assuntos
Envelhecimento/patologia , Interleucina-6/sangue , Desenvolvimento Muscular , Atrofia Muscular/sangue , Síndrome de Emaciação/sangue , Animais , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia
17.
Cell Death Discov ; 7(1): 4, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431881

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. To date, multiple panels of biomarkers have been described in ALS patients and murine models. Nevertheless, none of them has sufficient specificity and thus the molecular signature for ALS prognosis and progression remains to be elucidated. Here we overcome this limitation through a longitudinal study, analyzing serum levels of circulating miRNAs, stable molecules that are recently used as promising biomarkers for many types of human disorders, in ALS patients during the progression of the pathology. We performed next-generation sequencing (NGS) analysis and absolute RT quantification of serum samples of ALS patients and healthy controls. The expression levels of five selected miRNAs were quantitatively analyzed during disease progression in each patient and we demonstrated that high levels of miR-206, miR-133a and miR-151a-5p can predict a slower clinical decline of patient functionality. In particular, we found that miR-206 and miR-151a-5p serum levels were significantly up-regulated at the mild stage of ALS pathology, to decrease in the following moderate and severe stages, whereas the expression levels of miR-133a and miR-199a-5p remained low throughout the course of the disease, showing a diagnostic significance in moderate and severe stages for miR-133a and in mild and terminal ones for miR-199a-5p. Moreover, we found that miR-423-3p and 151a-5p were significantly downregulated respectively in mild and terminal stages of the disease. These data suggest that these miRNAs represent potential prognostic markers for ALS disease.

18.
Antioxidants (Basel) ; 9(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023202

RESUMO

Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.

19.
J Oncol ; 2020: 9342732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184826

RESUMO

Erythropoietin-producing hepatocellular receptors (Eph) promote the onset and sustain the progression of cancers such as colorectal cancer (CRC), in which the A2 subtype of Eph receptor expression has been shown to correlate with a poor prognosis and has been identified as a promising therapeutic target. Herein, we investigated, in vitro and in vivo, the effects of treatment with GLPG1790, a potent pan-Eph inhibitor. The small molecule has selective activity against the EphA2 isoform in human HCT116 and HCT15 CRC cell lines expressing a constitutively active form of RAS concurrently with a wild-type or mutant form of p53, respectively. GLPG1790 reduced EPHA2 phosphorylation/activation and induced G1/S cell-cycle growth arrest by downregulating the expression of cyclin E and PCNA, while upregulating p21Waf1/Cip1 and p27Cip/Kip. The inhibition of ephrin signaling induced quiescence in HCT15 and senescence in HCT116 cells. While investigating the role of CRC-related, pro-oncogenic p53 and RAS pathways, we found that GLPG1790 upregulated p53 expression and that silencing p53 or inhibiting RAS (human rat sarcoma)/ERKs (extracellular signal-regulated kinase) signaling restrained the ability of GLPG1790 to induce senescence in HCT116 cells. On the other hand, HCT15 silencing of p53 predisposed cells to GLPG1790-induced senescence, whilst no effects of ERK inhibition were observed. Finally, GLPG1790 hindered the epithelial-mesenchymal transition, reduced the migratory capacities of CRC, and affected tumor formation in xenograft models in vivo more efficiently using HCT116 than HCT15 for xenografts. Taken together, our data suggest the therapeutic potential of GLPG1790 as a signal transduction-based therapeutic strategy in to treat CRC.

20.
Cells ; 8(3)2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862132

RESUMO

Muscle regeneration, characterized by the activation and proliferation of satellite cells and other precursors, is accompanied by an inflammatory response and the remodeling of the extracellular matrix (ECM), necessary to remove cellular debris and to mechanically support newly generated myofibers and activated satellite cells. Muscle repair can be considered concluded when the tissue architecture, vascularization, and innervation have been restored. Alterations in these connected mechanisms can impair muscle regeneration, leading to the replacement of functional muscle tissue with a fibrotic scar. In the present review, we will discuss the cellular mediators of fibrosis and how the altered expression and secretion of soluble mediators, such as IL-6 and IGF-1, can modulate regulatory networks involved in the altered regeneration and fibrosis during aging and diseases.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transdução de Sinais , Animais , Fibrose , Humanos , Regeneração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa