Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2119726119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380900

RESUMO

Intense light­matter interactions and unique structural and electrical properties make van der Waals heterostructures composed by graphene (Gr) and monolayer transition metal dichalcogenides (TMD) promising building blocks for tunneling transistors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics, and quantum light emitting devices (QLEDs), bright and narrow-line emitters using minimal amounts of active absorber material. The performance of such devices is critically ruled by interlayer interactions which are still poorly understood in many respects. Specifically, two classes of coupling mechanisms have been proposed, charge transfer (CT) and energy transfer (ET), but their relative efficiency and the underlying physics are open questions. Here, building on a time-resolved Raman scattering experiment, we determine the electronic temperature profile of Gr in response to TMD photoexcitation, tracking the picosecond dynamics of the G and 2D Raman bands. Compelling evidence for a dominant role of the ET process accomplished within a characteristic time of ∼4 ps is provided. Our results suggest the existence of an intermediate process between the observed picosecond ET and the generation of a net charge underlying the slower electric signals detected in optoelectronic applications.

2.
J Am Chem Soc ; 142(5): 2285-2292, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31917551

RESUMO

Identifying the structural rearrangements during photoinduced reactions is a fundamental challenge for understanding from a microscopic perspective the dynamics underlying the functional mechanisms of heme proteins. Here, femtosecond stimulated Raman spectroscopy is applied to follow the ultrafast evolution of two different proteins, each bearing a six-coordinate heme with two amino acid axial ligands. By exploiting the sensitivity of Raman spectra to the structural configuration, we investigate the effects of photolysis and the binding of amino acid residues in cytochrome c and neuroglobin. By comparing the system response for different time delays and Raman pump resonances, we show how detailed properties of atomic motions and energy redistribution can be unveiled. In particular, we demonstrate substantially faster energy flow from the dissociated heme to the protein moiety in cytochrome c, which we assign to the presence of covalent heme-protein bonds.


Assuntos
Hemeproteínas/química , Análise Espectral Raman/métodos , Cinética , Ligantes , Vibração
3.
Proc Natl Acad Sci U S A ; 112(8): 2331-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675511

RESUMO

Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down, rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent these limitations here, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to the temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong.

4.
Chemphyschem ; 16(16): 3438-43, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26387662

RESUMO

Femtosecond stimulated Raman scattering (FSRS) spectroscopy is a powerful pump-probe technique that can track electronic and vibrational dynamics with high spectral and temporal resolution. The investigation of extremely short-lived species, however, implies deciphering complex signals and is ultimately hampered by unwanted nonlinear effects once the time resolution limit is approached and the pulses overlap temporally. Using the loop diagrams formalism we calculate the fifth-order response of a model system and address the limiting case where the relevant dynamics timescale is comparable to the pump-pulse duration and, consequently, the pump and the probe overlap temporally. We find that in this regime, additional diagrams that do not contribute for temporally well separated pulses need to be taken into account, giving rise to new time-dependent features, even in the absence of photoinduced dynamics and for negative delays.

5.
J Phys Chem Lett ; 15(25): 6634-6646, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38888442

RESUMO

Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.

6.
Phys Rev Lett ; 111(7): 077801, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992083

RESUMO

Density-driven phase transformations are a known phenomenon in liquids. Pressure-driven transitions from an open low-density to a higher-density close-packed structure were observed for a number of systems. Here, we show a less intuitive, inverse behavior. We investigated the electronic, atomic, and dynamic structures of liquid Rb along an isothermal line at 573 K, at 1.2-27.4 GPa, by means of ab initio molecular dynamics simulations and inelastic x-ray scattering experiments. The excellent agreement of the simulations with experimental data performed up to 6.6 GPa validates the overall approach. Above 12.5 GPa, the breakdown of the nearly-free-electron model drives a transition of the pure liquid metal towards a less metallic, denser liquid, whose first coordination shell is less compact. Our study unveils the interplay between electronic, structural, and dynamic degrees of freedom along this liquid-liquid phase transition. In view of its electronic nature, we believe that this behavior is general for the first group elements, thus shedding new light into the high-pressure properties of alkali metals.

7.
J Chem Phys ; 138(3): 034502, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343280

RESUMO

Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.


Assuntos
Argônio/química , Temperatura Alta , Ferro/química , Lítio/química , Simulação de Dinâmica Molecular
8.
Nat Commun ; 13(1): 7770, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522323

RESUMO

Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.


Assuntos
Vibração , Análise Espectral
9.
Front Mol Biosci ; 9: 986022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533081

RESUMO

High levels of 2-hydroxyisobutyric acid (2-HIBA) were found in urines of patients with obesity and hepatic steatosis, suggesting a potential involvement of this metabolite in clinical conditions. The gut microbial origin of 2-HIBA was hypothesized, however its actual origin and role in biological processes are still not clear. We investigated how treatment with 2-HIBA affected the physiology of the model organism Caenorhabditis elegans, in both standard and high-glucose diet (HGD) growth conditions, by targeted transcriptomic and metabolomic analyses, Coherent Anti-Stokes Raman Scattering (CARS) and two-photon fluorescence microscopy. In standard conditions, 2-HIBA resulted particularly effective to extend the lifespan, delay ageing processes and stimulate the oxidative stress resistance in wild type nematodes through the activation of insulin/IGF-1 signaling (IIS) and p38 MAPK pathways and, consequently, through a reduction of ROS levels. Moreover, variations of lipid accumulation observed in treated worms correlated with transcriptional levels of fatty acid synthesis genes and with the involvement of peptide transporter PEP-2. In HGD conditions, the effect of 2-HIBA on C. elegans resulted in a reduction of the lipid droplets deposition, accordingly with an increase of acs-2 gene transcription, involved in ß-oxidation processes. In addition, the pro-longevity effect appeared to be correlated to higher levels of tryptophan, which may play a role in restoring the decreased viability observed in the HGD untreated nematodes.

10.
J Chem Phys ; 135(16): 164510, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22047255

RESUMO

Molecular dynamics (MD) simulations of the glass-former 2Ca(NO(3))(2·3KNO(3), CKN, were performed as a function of temperature at pressures 0.1 MPa, 0.5 GPa, 1.0 GPa, and 2.0 GPa. Diffusion coefficient, relaxation time of the intermediate scattering function, and anion reorientational time were obtained as a function of temperature and densitiy ρ. These dynamical properties of CKN scale as ρ(γ)∕T with a common value γ = 1.8 ± 0.1. The scaling parameter γ is consistent with the exponent of the repulsive part of an effective intermolecular potential for the repulsion between the atoms at shortest distance in the equilibrium structure of liquid CKN, Ca(2+), and oxygen atoms of NO(3)(-). Correlation between potential energy and virial is obeyed for the short-range terms of the potential function, but not for the whole potential including coulombic interactions. Decoupling of diffusion coefficient and reorientational relaxation time from relaxation time take place at a given ρ(γ)∕T value, i.e., breakdown of Stokes-Einstein and Debye-Stokes-Einstein equations result from combined thermal and volume effects. The MD results agree with correlations proposed between long-time relaxation and short-time dynamics, lnτ ∝ 1∕, where the mean square displacement concerns a time window of 10.0 ps. It has been found that scales as ρ(γ)∕T above and below the glass transition temperature, so that thermodynamic scaling of liquid dynamics can be thought as a consequence of theories relating short- and long-time dynamics, and the more fundamental scaling concerns short-time dynamical properties.

11.
J Phys Chem Lett ; 12(38): 9239-9247, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34533307

RESUMO

Photophysical and photochemical processes are ruled by the interplay between transient vibrational and electronic degrees of freedom, which are ultimately determined by the multidimensional potential energy surfaces (PESs). Differences between ground and excited PESs are encoded in the relative intensities of resonant Raman bands, but they are experimentally challenging to access, requiring measurements at multiple wavelengths under identical conditions. Herein, we perform a two-color impulsive vibrational scattering experiment to launch nuclear wavepacket motions by an impulsive pump and record their coupling with a targeted excited-state potential by resonant Raman processes with a delayed probe, generating in a single measurement background-free vibrational spectra across the entire sample absorption. Building on the interference between the multiple pathways resonant with the excited-state manifold that generate the Raman signal, we show how to experimentally tune their relative phase by varying the probe chirp, decoding nuclear displacements along different normal modes and revealing the multidimensional PESs. Our results are validated against time-dependent density functional theory.

12.
Light Sci Appl ; 10(1): 92, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911069

RESUMO

Self-action nonlinearity is a key aspect - either as a foundational element or a detrimental factor - of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.

13.
J Chem Phys ; 133(2): 024502, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20632758

RESUMO

The approach of generalized collective modes is applied to the study of dispersion curves of collective excitations along isothermal lines of supercritical pure Lennard-Jones fluid. An effect of structural relaxation and other nonhydrodynamic relaxation processes on the dispersion law is discussed. A simple analytical expression for the dispersion law in the long-wavelength region of acoustic excitations is obtained within a three-variable viscoelastic model of generalized hydrodynamics. It is shown that the deviation from the linear dependence in the long-wavelength region can be either "positive" or "negative" depending on the ratio between the high-frequency (elastic) and isothermal speed of sound. An effect of thermal fluctuations on positive and negative dispersion is estimated from the analytical solution of a five-variable thermoviscoelastic model that generalizes the results of the viscoelastic treatment. Numerical results are reported for a Lennard-Jones supercritical fluid along two isothermal lines T(*)=1.71,4.78 with different densities and discussed along the theoretical expressions derived.

14.
J Phys Chem Lett ; 11(18): 7805-7813, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841039

RESUMO

Excited state vibrations are crucial for determining the photophysical and photochemical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally restricted to ground state properties. Working under resonance conditions enables cross-section enhancement and selective excitation to a targeted electronic level but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information about ground and excited state vibrations can be disentangled by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring with the signal generation. The proposed method is then exploited to elucidate the vibrational properties of the ground and excited electronic states in the paradigmatic case of cresyl violet. We anticipate that the presented approach holds the potential for selective mapping of the reaction coordinates pertaining to transient electronic stages implied in photoactive compounds.

15.
J Phys Chem B ; 113(10): 3099-104, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19227993

RESUMO

The pressure dependence of the glass-transition temperature, Tg(P), of the ionic glass-former 2Ca(NO3)2 x 3KNO3, CKN, has been obtained by molecular dynamics (MD) simulations The liquid-glass difference of thermal expansivity, deltaalpha, heat capacity, deltaCp, and isothermal compressibility, deltak, have been calculated as a function of pressure. It has been found that the Ehrenfest relation dTg/dP = TVdeltaalpha/deltaCp predicts the pressure dependence of Tg, but the other Ehrenfest relation, dTg/dP = deltakappa/deltaalpha, does not. Consequently, the Prigogine-Defay ratio, pi = deltaCpdeltakappa/TVdeltaalpha2, is n pi approximately 1.2 at low pressures, but increases 1 order of magnitude at high pressures. The pressure dependence of the Prigogine-Defay ratio is interpreted in light of recent explanations for the finding pi > 1.

16.
J Phys Chem Lett ; 10(24): 7789-7796, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31765160

RESUMO

In impulsive stimulated Raman scattering, vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are monitored in real time and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically, in order to retrieve broadband Raman spectra, a fine sampling of the time delays between the Raman and probe pulses is required, making conventional ISRS ineffective for probing irreversible phenomena and/or weak scatterers typically demanding long acquisition times, with signal-to-noise ratios that crucially depend on the pulse fluences and overlap stabilities. To overcome such limitations, here we introduce the chirped-based impulsive stimulated raman scattering (CISRS) technique. Specifically, we show how introducing a chirp in the probe pulse can be exploited for recording the Raman information without the need to scan over the Raman-probe pulse delay. We then experimentally demonstrate with a few examples how to use the introduced scheme to measure Raman spectra.

17.
Nat Commun ; 9(1): 1971, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773798

RESUMO

Electronic properties and lattice vibrations are expected to be strongly correlated in metal-halide perovskites, due to the soft fluctuating nature of their crystal lattice. Thus, unveiling electron-phonon coupling dynamics upon ultrafast photoexcitation is necessary for understanding the optoelectronic behavior of the semiconductor. Here, we use impulsive vibrational spectroscopy to reveal vibrational modes of methylammonium lead-bromide perovskite under electronically resonant and non-resonant conditions. We identify two excited state coherent phonons at 89 and 106 cm-1, whose phases reveal a shift of the potential energy minimum upon ultrafast photocarrier generation. This indicates the transition to a new geometry, reached after approximately 90 fs, and fully equilibrated within the phonons lifetime of about 1 ps. Our results unambiguously prove that these modes drive the crystalline distortion occurring upon photo-excitation, demonstrating the presence of polaronic effects.

18.
J Phys Chem Lett ; 8(5): 966-974, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28177628

RESUMO

Photophysical and photochemical processes are often dominated by molecular vibrations in various electronic states. Dissecting the corresponding, often overlapping, spectroscopic signals from different electronic states is a challenge hampering their interpretation. Here we address impulsive stimulated Raman spectroscopy (ISRS), a powerful technique able to coherently stimulate and record Raman-active modes using broadband pulses. Using a quantum-mechanical treatment of the ISRS process, we show the mode-specific way the various spectral components of the broadband probe contribute to the signal generated at a given wavelength. We experimentally demonstrate how to manipulate the signal by varying the probe chirp and the phase-matching across the sample, thereby affecting the relative phase between the various contributions to the signal. These novel control knobs allow us to selectively enhance desired vibrational features and distinguish spectral components arising from different excited states.

19.
Sci Rep ; 7(1): 10745, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878228

RESUMO

We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

20.
Sci Rep ; 6: 28025, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320682

RESUMO

Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.


Assuntos
Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Piridinas/farmacologia , Linhagem Celular , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Histona Desacetilases/química , Humanos , Processamento de Imagem Assistida por Computador , Gotículas Lipídicas/fisiologia , Microscopia Óptica não Linear , Ácido Oleico/farmacologia , Perilipina-2/genética , Perilipina-2/metabolismo , Perilipina-4/genética , Perilipina-4/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/biossíntese , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa