Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114506, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39052479

RESUMO

Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.

2.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

4.
Reprod Biol Endocrinol ; 8: 22, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20210997

RESUMO

BACKGROUND: Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR) signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL) maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients. METHODS: To determine whether mutations in FKBPL could contribute to the azoospermic phenotype, we examined expression in mouse and human tissues by RNA array blot, RT-PCR and immunohistochemistry and sequenced the complete gene from two azoospermic patient cohorts and matching control groups. FKBPL-AR interaction was assayed using reporter constructs in vitro. RESULTS: FKBPL is strongly expressed in mouse testis, with expression upregulated at puberty. The protein is expressed in human testis in a pattern similar to FKBP52 and also enhanced AR transcriptional activity in reporter assays. We examined sixty patients from the Japanese patient group and found one inactivating mutation and one coding change, as well as a number of non-coding changes, all absent in fifty-six controls. A second, Irish patient cohort of thirty showed another two coding changes not present in thirty proven fertile controls. CONCLUSIONS: Our results describe the first alterations in the gene for FKBPL in azoospermic patients and indicate a potential role in AR-mediated signalling in the testis.


Assuntos
Imunofilinas/genética , Infertilidade Masculina/genética , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Estudos de Coortes , Ligação Genética , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Mutação/fisiologia , Homologia de Sequência de Aminoácidos , Proteínas de Ligação a Tacrolimo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa