Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Atmos Environ (1994) ; 302: 119731, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968626

RESUMO

The recent pandemic caused by COVID-19 profoundly changed people's habits. Wearing a face mask has become usual in everyday life to reduce the risk of infection from airborne diseases. At the beginning of the pandemic, the massive request of surgical or filtering face piece (FFP) masks resulted in a global shortage of these devices for the most exposed people, such as healthcare workers. Due to this high demand for respiratory protective devices, many industrial plants have partly converted to the production of face masks using adapted materials and not complying with any specific regulation (non-standard respiratory protective devices or community masks). In this work, an ad-hoc laboratory methodology has been developed to evaluate the filtration efficiency of the materials that compose the community masks using specific instrumentation. The instrumentation consists of three main tools: an aerosol generator, a specifically designed measuring chamber, and an optical particle sizer (OPS) for the measurement of aerosol concentration. The generated aerosol was sent into the measuring chamber, divided into two separate sections by the respiratory mask. The OPS measured the aerosol mass concentration upstream and downstream of the respiratory mask, and from the concentration difference the filtration efficiency was evaluated. The proposed methodology has been validated by evaluating the particle filtration efficiency (PFE) of certified respiratory masks and was then applied for the evaluation of the filtration efficiency of different types of non-standard or community masks to analyze their effectiveness in protecting from the risk of infection of airborne diseases.

2.
Environ Geochem Health ; 44(7): 2009-2020, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683533

RESUMO

Thermal caves represent an environment characterized by unique chemical/physical properties, often used for treatment and care of musculoskeletal, respiratory, and skin diseases.However, these environments are poorly characterized for their physical and microbiological characteristics; furthermore, the recent pandemic caused by COVID-19 has highlighted the need to investigate the potential transmission scenario of SARS-CoV-2 virus in indoor environments where an in-depth analysis of the aerosol concentrations and dimensional distributions are essential to monitor the spread of the virus.This research work was carried out inside a natural cave located in Viterbo (Terme dei Papi, Italy) where a waterfall of sulfur-sulfate-bicarbonate-alkaline earth mineral thermal water creates a warm-humid environment with 100% humidity and 48 °C temperature. Characterization of the aerosol and bioaerosol was carried out to estimate the personal exposure to aerosol concentrations, as well as particle size distributions, and to give an indication of the native microbial load.The data obtained showed a predominance of particles with a diameter greater than 8 µm, associated with low ability of penetration in the human respiratory system. A low microbial load was also observed, with a prevalence of noncultivable strains generated by the aerosolization of the thermal waters.Finally, the estimation of SARS-CoV-2 infection risk by means of mathematical modeling revealed a low risk of transmission, with a decisive effect given by the mechanical ventilation system, which together with the adoption of social distancing measures makes the risk of infection extremely low.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , COVID-19/epidemiologia , Cavernas , Humanos , Pandemias
3.
Environ Pollut ; 266(Pt 2): 115209, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688075

RESUMO

In everyday life, people are exposed to different concentrations of airborne particles depending on the microenvironment where they perform their different activities. Such exposure can lead to high sub-micron particle doses. The received dose depends on particle concentration to which people are exposed (typically expressed in terms of number or surface area), time spent in each activity or microenvironment (time activity pattern) and amount of air inhaled (inhalation rate). To estimate an actual value of the received dose, all these parameters should be measured under real-life conditions; in fact, the concentrations should be measured on a personal scale (i.e. through a direct exposure assessment), whereas time activity patterns and inhalation rates specific to the activity performed should be considered. The difficulties in obtaining direct measurements of these parameters usually lead to adopt time activity patterns and inhalation rates already available in scientific literature for typical populations, and local outdoor particle concentrations measured with fixed monitoring stations and extrapolated for all the other microenvironments. To overcome these limitations, we propose a full-field method for estimating the received dose of a population sample, in which all the parameters (concentration levels, time activity patterns and inhalation rates) are measured under real-life conditions (also including the inhalation rates, that were evaluated on the basis of the measured heart rates). Specifically, 34 volunteers were continuously monitored for seven days and the data of sub-micron particle concentrations, activities performed, and inhalation rates were recorded. The received dose was calculated with the proposed method and compared with those obtained from different simplified methodologies that consider typical data of particle concentrations, time activity patterns and inhalation rates obtained from literature. The results show that, depending on the methodology used, the differences in the received daily dose can be significant, with a general underestimation of the most simplified method.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Exposição por Inalação/análise , Tamanho da Partícula , Material Particulado/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-32069790

RESUMO

One of the most important functions of air conditioning systems in operating rooms is to protect occupants against pathogenic agents transported by air. This protection is done by simultaneously controlling the air distribution, temperature, humidity, filtration and infiltration from other areas etc. Due to their low price, simple installation, operation and maintenance, window/wall air conditioning system have largely been used in operating rooms in Brazil, even if these types of equipment only recirculate the air inside the room without appropriate filtration and renovation with outdoor air. In this context, this work aims to analyse the performance of the window/wall air conditioning systems on indoor air ventilation in operating rooms by measuring particle number concentrations and carbon dioxide concentrations during different surgical procedures, in a single surgical room and in the nearby areas (corridor) for two cases: single surgery and two subsequent surgeries. In addition, the efficiency of the analysed air conditioning system was evaluated by comparing the ventilation level calculated in the surgical room with the ventilation required in order to maintain the carbon dioxide concentration within acceptable levels. The results showed that this type of air conditioning system is not appropriate for use in operating rooms since it cannot provide an adequate level of ventilation. The CO2 concentrations during surgeries, in fact, significantly exceeded acceptable values and a simultaneous increase in particle number concentration was observed. The results also showed that there is a high risk of contamination between subsequent surgeries in the same surgical room, due to residues of contaminants transported by the particles emitted during the surgeries that were not removed from the operating room by the air conditioning system. The particle number concentration measured in the second surgery, in fact, was approximately six times higher than in the first surgery.


Assuntos
Ar Condicionado , Poluição do Ar em Ambientes Fechados , Dióxido de Carbono , Salas Cirúrgicas , Material Particulado , Poluição do Ar em Ambientes Fechados/análise , Brasil , Dióxido de Carbono/análise , Material Particulado/análise , Ventilação
5.
Sci Total Environ ; 642: 137-147, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894873

RESUMO

Smoking activities still represent the main, and preventable, cause of lung cancer risk worldwide. For this reason, a number of studies were carried out to deepen and better characterize the emission of cigarette-generated mainstream aerosols in order to perform an a-priori evaluation of the particle doses and related lung cancer risks received by active smokers. On the contrary, a gap of knowledge still exists in evaluating the dose and risk received by passive smokers in indoor private micro-environments (e.g. homes). For this purpose, in the present paper, an experimental campaign was performed to evaluate the exposure to second-hand aerosol from conventional and electronic cigarettes and to estimate the consequent dose received by passive smokers/vapers and the related lung cancer risk. Measurements of exposure levels in terms of particle number, PM10 and black carbon concentrations, as well as particle size distributions, were performed in a naturally ventilated indoor environment during smoking activities of tobacco and electronic cigarettes. The particle emission rates of smokers and vapers, for the different aerosol metrics under investigation, were evaluated. Moreover, for a typical exposure scenario, the dose received by the passive smokers/vapers in a naturally ventilated indoor micro-environment was estimated through a Multiple-Path Particle Dosimetry (MPPD) model able to assess the particle dose received in the different tracts of the respiratory systems. Furthermore, on the basis of scientific literature data about mass fraction of carcinogenic compounds contained in cigarette-emitted particles (i.e. Heavy Metals, Benzo-a-pyrene and nitrosamines) and the estimated doses, the excess life cancer risk (ELCR) for passive smokers/vapers was evaluated. Cumulative respiratory doses for passive smokers were up to 15-fold higher than for passive vapers. The ELCR for second-hand smokers was five orders of magnitude larger than for second-hand vapers.


Assuntos
Aerossóis/análise , Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias Pulmonares/epidemiologia , Poluição por Fumaça de Tabaco/análise , Humanos , Fumantes , Nicotiana , Poluição por Fumaça de Tabaco/estatística & dados numéricos
6.
Sci Total Environ ; 586: 623-630, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28196755

RESUMO

Emission of particles from laser printers in office environments is claimed to have impact on human health due to likelihood of exposure to high particle concentrations in such indoor environments. In the present paper, particle emission characteristics of 110 laser printers from different manufacturers were analyzed, and estimations of their emission rates were made on the basis of measurements of total concentrations of particles emitted by the printers placed in a chamber, as well as particle size distributions. The emission rates in terms of number, surface area and mass were found to be within the ranges from 3.39×108partmin-1 to 1.61×1012partmin-1, 1.06×100mm2min-1 to 1.46×103mm2min-1 and 1.32×10-1µgmin-1 to 1.23×102µgmin-1, respectively, while the median mode value of the emitted particles was found equal to 34nm. In addition, the effect of laser printing emissions in terms of employees' exposure in offices was evaluated on the basis of the emission rates, by calculating the daily surface area doses (as sum of alveolar and tracheobronchial deposition fraction) received assuming a typical printing scenario. In such typical printing conditions, a relatively low total surface area dose (2.7mm2) was estimated for office employees with respect to other indoor microenvironments including both workplaces and homes. Nonetheless, for severe exposure conditions, characterized by operating parameters falling beyond the typical values (i.e. smaller office, lower ventilation, printer located on the desk, closer to the person, higher printing frequency etc.), significantly higher doses are expected.

7.
Waste Manag ; 56: 207-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27462027

RESUMO

The toxicity of particulate matter emitted from waste-to-energy plants, is associated to the compounds attached to the particles, several of which have been classified by the International Agency for Research on Cancer (IARC) in the Group 1 carcinogens. In this paper a modified risk-assessment model, deriving from an existing one, was applied to estimate the lung cancer risk related to both ultrafine and coarse particles emitted from an incinerator whose people living nearby are exposed to. To this end, the measured values of Polycyclic Aromatic Hydrocarbons (PAHs), heavy metals (As, Cd, Ni) and PCDD/Fs (Polychlorinated dibenzodioxins/furans) emitted from an incinerator placed in Italy were used to calculate the Excess Lifetime Cancer Risk (ELCR) at the stack of the plant. The estimated ELCR was then used as input data in a numerical CFD (Computational Fluid Dynamics) model that solves the mass, momentum, turbulence and species transport equations to study the influence of wind speed and chimney height on the ELCR at receptor sites. Furthermore, combining meteorological data (wind speed and direction), and hypothesizing different exposure scenarios on the basis of time-activity patterns of people living nearby the plant, specific risk maps were obtained by evaluating ELCR around the incinerator. Results show that with the increasing of wind speed, the ELCR value downwind at the plant decreases and its point of maximum risk becomes closer to the stack. On the other hand, increasing the stack height decreases the ELCR, moving away from the stack the point of maximum risk. Finally, the risk maps for people living or working nearby the plant have highlighted that the excess risk of lung cancer due to the presence of the incinerator is below the WHO target (1×10(-5)).


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental , Incineração , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise , Centrais Elétricas , Dioxinas/análise , Monitoramento Ambiental , Feminino , Humanos , Itália/epidemiologia , Neoplasias Pulmonares/induzido quimicamente , Masculino , Metais Pesados/análise , Modelos Teóricos , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
8.
Waste Manag ; 38: 157-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670165

RESUMO

A numerical investigation on the parameters influencing the ultrafine particle concentrations downwind an incinerator plant has been carried out on a three-dimensional full scale model. The simulation was based on a modified version of the k-ε turbulence model in order to take into account the thermal buoyancy effect of the plume, and reproducing a stable and neutral atmospheric boundary layer by setting appropriate values of velocity, turbulent kinetic energy and turbulent dissipation rate. The ability of the model to reproduce and maintain a stable atmospheric boundary layer was evaluated by analyzing the turbulent characteristics of the flow along the domain. A parametric analysis made on the basis of different plant operational, environmental, and flue gas treatment parameters was carried out in order to evaluate the impact of incinerator plants on the background concentration of ultrafine particles. The evaluation was made at 5 km downwind the chimney in a breathable area, showing that the most significant impact is due to the flue gas treatment section, with a variation on the background concentration up to 370% for a plant hypothetically working without controls on ultrafine particles emission. Operational and environmental parameters determine variations of the concentrations ranging from 1.62% to 4.48% for the lowest and highest chimney, from 1.41% to 4.52% for the lowest and highest wind speed and from 2.48% to 4.5% for the lowest and highest flue gas velocity, respectively. In addition, plume rise evaluation was carried out as a function of wind speed and flue gas velocity from the chimney.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Incineração , Material Particulado/análise , Movimentos do Ar , Modelos Teóricos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa