RESUMO
Typical absence seizures (ASs) are brief periods of lack of consciousness, associated with 2.5-4 Hz spike-wave discharges (SWDs) in the EEG, which are highly prevalent in children and teenagers. The majority of probands in these young epileptic cohorts show neuropsychological comorbidities, including cognitive, memory and mood impairments, even after the seizures are pharmacologically controlled. Similar cognition and memory deficits have been reported in different, but not all, genetic animal models of ASs. However, since these impairments are subtle and highly task-specific their presence may be confounded by an anxiety-like phenotype and no study has tested anxiety and memory in the same animals. Moreover, the majority of studies used non-epileptic inbred animals as the only control strain and this may have contributed to a misinterpretation of these behavioural results. To overcome these issues, here we used a battery of behavioural tests to compare anxiety and memory in the same animals from the well-established inbred model of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), their inbred strain of Non-Epileptic Control (NEC) strain (that lack ASs) and normal outbred Wistar rats. We found that GAERS do not exhibit increased anxiety-like behavior and neophobia compared to both NEC and Wistar rats. In contrast, GAERS show decreased spontaneous alternation, spatial working memory and cross-modal object recognition compared to both NEC and Wistar rats. Furthermore, GAERS preferentially used egocentric strategies to perform spatial memory tasks. In summary, these results provide solid evidence of memory deficits in GAERS rats that do not depend on an anxiety or neophobic phenotype. Moreover, the presence of differences between NEC and Wistar rats stresses the need of using both outbred and inbred control rats in behavioural studies involving genetic models of ASs.
Assuntos
Ansiedade , Convulsões , Humanos , Criança , Adolescente , Ratos , Animais , Ratos Wistar , Cognição , Transtornos da MemóriaRESUMO
Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.
Assuntos
Hipocampo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Septinas/metabolismo , Sinapses/metabolismo , Animais , Autofagia/fisiologia , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Camundongos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Sinapses/patologiaRESUMO
BACKGROUND: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTS: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONS: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Transmissão Sináptica , TransfecçãoRESUMO
Read the highlighted article 'Correlation of transient adenosine release and oxygen changes in the caudate-putamen' on page 13.
Assuntos
Adenosina , Receptor A2A de Adenosina , Animais , Acoplamento Neurovascular , Oxigênio , Putamen , Ratos , Ratos Sprague-DawleyRESUMO
This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907.
Assuntos
Adenosina/metabolismo , Canabinoides/metabolismo , Corpo Estriado/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , MasculinoRESUMO
Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-ß (Aß) peptide. We recently showed that Aß leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aß selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aß induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aß impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aß-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calpaína/farmacologia , Lobo Frontal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor trkB/metabolismo , Animais , Encéfalo/citologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor trkB/genética , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aß25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-ß (Aß) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aß-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aß. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aß insult do not require the activation of A2AR.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores A2 de Adenosina/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Caspase 3/metabolismo , Células Cultivadas , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismoRESUMO
Hypoxic-ischemic (HI) injury perinatal brain is a major contributor to morbidity and mortality to infants and children. Adenosine may play a role in the pathophysiology of HI, since it modulates the inflammatory process and the release of several neurotransmitters. Thus, the aim of this study was to identify the isoforms of adenosine deaminase (ADA) responsible for the enzymatic activity as well as the adenosine kinase (ADK) and A1 adenosine receptor (A1R) expression in the cerebral cortex eight days after HI. Myeloperoxidase (MPO) and N-acetyl-glucosaminidase (NAG) were assessed as inflammation markers. ADA activity was analyzed, in the presence or absence of a specific ADA1 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine. The ADA1 activity (92.6%) was significantly higher than ADA2 (7.4%) activity in the cerebral cortex eight days after HI. A1Rs and ADK protein expression showed decreased 8 days after insult. Interestingly, the ADA1, MPO, and NAG activities were correlated positively. In view of this, we conclude that the inhibitor of ADA1, in in vitro conditions, was effective in decreasing the ADA activity, and that mainly ADA1 isoform is responsible for the increase in the ADA activity 8 days after HI insult. Therefore, HI neonatal was able to alter the ADK and A1R expression. Thus, due to the importance of adenosine signaling in the regulation of inflammatory and immune process and the crucial role of ADA in the postischemic homeostase of adenosine as well as during inflammatory process, we suggest that ADA1 inhibitors may play an important role in the regulation of events that follow the HI insult, favoring the increase in the adenosine in the sites of tissue injury. Together, these results highlight a role of the purinergic signaling cascade in the pathophysiology of HI neonatal.
Assuntos
Adenosina Desaminase/metabolismo , Encéfalo/patologia , Hipóxia-Isquemia Encefálica/enzimologia , Hipóxia-Isquemia Encefálica/patologia , Inflamação/patologia , Purinas/metabolismo , Acetilglucosaminidase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina Quinase/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Isoenzimas/metabolismo , Masculino , Peroxidase/metabolismo , Ratos Wistar , Receptor A1 de Adenosina/metabolismoRESUMO
Adenosine, through A(2A) receptor (A(2A)R) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A(2A)R on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K(+)-evoked [(3)H]glutamate release and inhibited the K(+)-evoked [(3)H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A(2A)R since for both neurotransmitters, the BDNF action was blocked by the A(2A)R antagonist SCH 58261 (50 nM). In the presence of the A(2A)R agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A(2A)R by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A(2A)R.
Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Fenetilaminas/farmacologia , Potássio/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Sinaptossomos/efeitos dos fármacos , Triazóis/farmacologiaRESUMO
Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.
Assuntos
Epilepsia , Nanopartículas Metálicas , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Masculino , Bicuculina/farmacologia , Platina/efeitos adversos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológicoRESUMO
It is well known that the levels of adenosine in the brain increase dramatically during cerebral hypoxic-ischemic (HI) insults. Its levels are tightly regulated by physiological and pathophysiological changes that occur during the injury acute phase. The aim of the present study was to examine the effects of the neonatal HI event on cytosolic and ecto-enzymes of purinergic system--NTPDase, 5'-nucleotidase (5'-NT) and adenosine deaminase (ADA)--in cerebral cortex of rats immediately post insult. Furthermore, the Na(+)/K(+)-ATPase activity, adenosine kinase (ADK) expression and thiobarbituric acid reactive species (TBARS) levels were assessed. Immediately after the HI event the cytosolic NTPDase and 5'-NT activities were increased in the cerebral cortex. In synaptosomes there was an increase in the ecto-ADA activity while the Na(+)/K(+) ATPase activity presented a decrease. The difference between ATP, ADP, AMP and adenosine degradation in synaptosomal and cytosolic fractions could indicate that NTPDase, 5'-NT and ADA were differently affected after insult. Interestingly, no alterations in the ADK expression were observed. Furthermore, the Na(+)/K(+)-ATPase activity was correlated negatively with the cytosolic NTPDase activity and TBARS content. The increased hydrolysis of nucleotides ATP, ADP and AMP in the cytosol could contribute to increased adenosine levels, which could be related to a possible innate neuroprotective mechanism aiming at potentiating the ambient levels of adenosine. Together, these results may help the understanding of the mechanism by which adenosine is produced following neonatal HI injury, therefore highlighting putative therapeutical targets to minimize ischemic injury and enhance recovery.
Assuntos
Adenosina Quinase/metabolismo , Adenosina/metabolismo , Córtex Cerebral/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Animais Recém-Nascidos , Masculino , Nucleosídeo-Trifosfatase/metabolismo , Pirofosfatases/metabolismo , Ratos , Ratos WistarRESUMO
Excitotoxicity is described as the exacerbated activation of glutamate AMPA and NMDA receptors that leads to neuronal damage, and ultimately to cell death. Astrocytes are responsible for the clearance of 80-90% of synaptically released glutamate, preventing excitotoxicity. Chronic stress renders neurons vulnerable to excitotoxicity and has been associated to neuropsychiatric disorders, i.e., anxiety. Microreactors containing platinum nanoparticles (Pt-NP) and glutamate dehydrogenase have shown in vitro activity against excitotoxicity. The purpose of the present study was to investigate the in vivo effects of these microreactors on the behavioral and neurobiological effects of chronic stress exposure. Rats were either unstressed or exposed for 2 weeks to an unpredictable chronic mild stress paradigm (UCMS), administered intra-ventral hippocampus with the microreactors (with or without the blockage of astrocyte functioning), and seven days later tested in the elevated T-maze (ETM; Experiment 1). The ETM allows the measurement of two defensive responses, avoidance and escape, in terms of psychopathology respectively related to generalized anxiety and panic disorder. Locomotor activity in an open field was also measured. Since previous evidence shows that stress inhibits adult neurogenesis, we evaluated the effects of the different treatments on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the dorsal and ventral hippocampus (Experiment 2). Results showed that UCMS induces anxiogenic effects, increases locomotion, and decreases the number of DCX cells in the dorsal and ventral hippocampus, effects that were counteracted by microreactor administration. This is the first study to demonstrate the in vivo efficacy of Pt-NP against the behavioral and neurobiological effects of chronic stress exposure.
Assuntos
Nanopartículas Metálicas , Platina , Animais , Ratos , Platina/metabolismo , Ratos Wistar , Neurogênese/fisiologia , Hipocampo/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Ácido Glutâmico/metabolismoRESUMO
Neuroprotection is one of the prominent functions of the interleukin (IL)-6-type cytokine family, for which the underlying mechanism(s) are not fully understood. We have previously shown that neuroprotection and neuromodulation mediated by IL-6 require neuronal adenosine A(1) receptor (A(1) R) function. We now have investigated whether two other IL-6-type cytokines [oncostatin M (OSM) and leukemia inhibitory factor (LIF)] use a similar mechanism. It is presented here that OSM but not LIF, enhanced the expression of A(1) Rs (both mRNA and protein levels) in cultured neurons. Whereas the neuroprotective effect of LIF was unchanged in A(1) R deficient neurons, OSM failed to protect neurons in the absence of A(1) R. In addition, OSM pre-treatment for 4 h potentiated the A(1) R-mediated inhibition of electrically evoked excitatory post-synaptic currents recorded from hippocampal slices either under normal or hypoxic conditions. No such effect was observed after LIF pre-treatment. Our findings thus strongly suggest that, despite known structural and functional similarities, OSM and LIF use different mechanisms to achieve neuroprotection and neuromodulation.
Assuntos
Fator Inibidor de Leucemia/fisiologia , Neurônios/fisiologia , Oncostatina M/fisiologia , Receptor A1 de Adenosina/fisiologia , Animais , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas In Vitro , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oncostatina M/farmacologia , Técnicas de Patch-Clamp , RNA Mensageiro/biossíntese , Receptor A1 de Adenosina/biossíntese , Receptor A1 de Adenosina/genética , Proteínas Recombinantes/farmacologia , Transmissão SinápticaRESUMO
Glutamate uptake is a process mediated by sodium-dependent glutamate transporters, preventing glutamate spillover from the synapse. Typically, astrocytes express higher amounts of glutamate transporters, thus being responsible for most of the glutamate uptake; nevertheless, neurons can also express these transporters, albeit in smaller concentrations. When not regulated, glutamate uptake can lead to neuronal death. Indeed, the majority of the studies regarding glutamate transporters have focused on excitotoxicity and the subsequent neuronal loss. However, later studies have found that glutamate uptake is not a static process, evincing a possible correlation between this phenomenon and the efficiency of synaptic transmission and plasticity. In this review, we will focus on the role of the increase in glutamate uptake that occurs during long-term potentiation (LTP) in the hippocampus, as well as on the impairment of long-term depression (LTD) under the same conditions. The mechanism underpinning the modulatory effect of glutamate transporters over synaptic plasticity still remains unascertained; yet, it appears to have a more prominent effect over the N-methyl-D-aspartate receptor (NMDAR), despite changes in other glutamate receptors may also occur.
RESUMO
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
RESUMO
The adult mammalian brain can produce new neurons in a process called adult neurogenesis, which occurs mainly in the subventricular zone (SVZ) and in the hippocampal dentate gyrus (DG). Brain-derived neurotrophic factor (BDNF) signaling and cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to independently modulate neurogenesis, but how they may interact is unknown. We now used SVZ and DG neurosphere cultures from early (P1-3) postnatal rats to study the CB1R and CB2R crosstalk with BDNF in modulating neurogenesis. BDNF promoted an increase in SVZ and DG stemness and cell proliferation, an effect blocked by a CB2R selective antagonist. CB2R selective activation promoted an increase in DG multipotency, which was inhibited by the presence of a BDNF scavenger. CB1R activation induced an increase in SVZ and DG cell proliferation, being both effects dependent on BDNF. Furthermore, SVZ and DG neuronal differentiation was facilitated by CB1R and/or CB2R activation and this effect was blocked by sequestering endogenous BDNF. Conversely, BDNF promoted neuronal differentiation, an effect abrogated in SVZ cells by CB1R or CB2R blockade while in DG cells was inhibited by CB2R blockade. We conclude that endogenous BDNF is crucial for the cannabinoid-mediated effects on SVZ and DG neurogenesis. On the other hand, cannabinoid receptor signaling is also determinant for BDNF actions upon neurogenesis. These findings provide support for an interaction between BDNF and endocannabinoid signaling to control neurogenesis at distinct levels, further contributing to highlight novel mechanisms in the emerging field of brain repair.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.
Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Regulação para Baixo , MicroRNAs/metabolismo , Neuroglia/patologia , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Contagem de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteína HMGB1/metabolismo , Homeostase , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroglia/metabolismo , Fenótipo , Transdução de Sinais , Superóxido Dismutase-1/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genéticaRESUMO
Both brain-derived neurotrophic factor (BDNF) and adenosine influence neuronal plasticity. We now investigated how adenosine influences the action of BDNF on synaptic transmission in the CA1 area of the rat hippocampal slices. Alone, BDNF (20-100 ng/ml) did not significantly affect field EPSPs (fEPSPs). However, a 2 min pulse of high-K(+) (10 mm) 46 min before the application of BDNF (20 ng/ml) triggered an excitatory action, an effect blocked by the TrkB receptor inhibitor K252a (200 nm), by the adenosine A(2A) receptor antagonist ZM 241385 (50 nm), and by the protein kinase A inhibitor H-89 (1 microm). Presynaptic, rather than postsynaptic depolarization was required to trigger the BDNF action because after K(+) depolarization BDNF also increased EPSCs recorded from pyramidal neurons voltage-clamped at -60 mV, and transient postsynaptic depolarization was unable to unmask the BDNF action. A weak theta burst stimulation of the afferents could elicit potentiation of synaptic transmission only when applied in the presence of BDNF. Activation of adenosine A(2A) receptors with CGS 21680 (10 nm), or the increase in extracellular adenosine levels induced by 5-iodotubercidin (100 nm) triggered the excitatory action of BDNF, a process prevented by ZM 241385 and by H-89. In the presence of dibutyryl-cAMP (0.5 mm), BDNF also increased fEPSPs but postsynaptic cAMP (0.5 mm) was unable to trigger the BDNF action. It is concluded that presynaptic activity-dependent release of adenosine, through activation of A(2A) receptors, facilitates BDNF modulation of synaptic transmission at hippocampal synapses.
Assuntos
Adenosina/análogos & derivados , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipocampo/fisiologia , Receptor A2A de Adenosina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Adenosina/metabolismo , Adenosina/farmacologia , Adenosina Quinase/antagonistas & inibidores , Animais , Bucladesina/farmacologia , Carbazóis/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Alcaloides Indólicos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/farmacologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor trkB/antagonistas & inibidores , Triazinas/farmacologia , Triazóis/farmacologiaRESUMO
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca(2+))-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca(2+), and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca(2+) response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.
Assuntos
Adaptação Fisiológica , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , 1-Metil-3-Isobutilxantina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cílios , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Masculino , Modelos Biológicos , Odorantes , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , RatosRESUMO
Parkinson's disease (PD) is a chronic movement disorder typically coupled to progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The treatments currently available are satisfactory for symptomatic management, but the efficacy tends to decrease as neuronal loss progresses. Neurotrophic factors (NTFs) are endogenous proteins known to promote neuronal survival, even in degenerating states. Therefore, the use of these factors is regarded as a possible therapeutic approach, which would aim to prevent PD or to even restore homeostasis in neurodegenerative disorders. Intriguingly, although favorable results in in vitro and in vivo models of the disease were attained, clinical trials using these molecules have failed to demonstrate a clear therapeutic benefit. Therefore, the development of animal models that more closely reproduce the mechanisms known to underlie PD-related neurodegeneration would be a major step towards improving the capacity to predict the clinical usefulness of a given NTF-based approach in the experimental setting. Moreover, some adjustments to the design of clinical trials ought to be considered, which include recruiting patients in the initial stages of the disease, improving the efficacy of the delivery methods, and combining synergetic NTFs or adding NTF-boosting drugs to the already available pharmacological approaches. Despite the drawbacks on the road to the use of NTFs as pharmacological tools for PD, very relevant achievements have been reached. In this article, we review the current status of the potential relevance of NTFs for treating PD, taking into consideration experimental evidence, human observational studies, and data from clinical trials.