RESUMO
Increased risk of neurodegenerative diseases has been envisaged for air pollution exposure. On the other hand, environmental risk factors, including air pollution, have been suggested for Amyotrophic Lateral Sclerosis (ALS) pathomechanism. Therefore, the neurotoxicity of ultrafine particulate matter (PM0.1) (PM < 0.1 µm size) and its sub-20â¯nm nanoparticle fraction (NP20) has been investigated in motor neuronal-like cells and primary cortical neurons, mainly affected in ALS. The present data showed that PM0.1 and NP20 exposure induced endoplasmic reticulum (ER) stress, as occurred in cortex and spinal cord of ALS mice carrying G93A mutation in SOD1 gene. Furthermore, NSC-34 motor neuronal-like cells exposed to PM0.1 and NP20 shared the same proteomic profile on some apoptotic factors with motor neurons treated with the L-BMAA, a neurotoxin inducing Amyotrophic Lateral Sclerosis/Parkinson-Dementia Complex (ALS/PDC). Of note ER stress induced by PM0.1 and NP20 in motor neurons was associated to pathological changes in ER morphology and dramatic reduction of organellar Ca2+ level through the dysregulation of the Ca2+-pumps SERCA2 and SERCA3, the Ca2+-sensor STIM1, and the Ca2+-release channels RyR3 and IP3R3. Furthermore, the mechanism deputed to ER Ca2+ refilling (e.g. the so called store operated calcium entry-SOCE) and the relative currents ICRAC were also altered by PM0.1 and NP20 exposure. Additionally, these carbonaceous particles caused the exacerbation of L-BMAA-induced ER stress and Caspase-9 activation. In conclusion, this study shows that PM0.1 and NP20 induced the aberrant expression of ER proteins leading to dysmorphic ER, organellar Ca2+ dysfunction, ER stress and neurotoxicity, providing putative correlations with the neurodegenerative process occurring in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Material Particulado , Animais , Camundongos , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios Motores/metabolismo , Proteômica , Cultura Primária de Células , Material Particulado/efeitos adversos , Estresse do Retículo Endoplasmático , Cálcio/metabolismo , Modelos Animais de DoençasRESUMO
Lysosomal function and organellar Ca2+ homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca2+ release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca2+ homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca2+ level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Ratos , Autofagia , Isquemia Encefálica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lisossomos/metabolismo , Neuroproteção , Neurotoxinas , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismoRESUMO
Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.
Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Tapsigargina/farmacologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Autofagia , HomeostaseRESUMO
COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1ß release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.
Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismoRESUMO
A robust activity of the lysosomal Ca2+ channel TRPML1 is sufficient to correct cellular defects in neurodegeneration. Importantly, lysosomes are refilled by the endoplasmic reticulum (ER). However, it is unclear how TRPML1 function could be modulated by the ER. Here, we deal with this issue in rat primary cortical neurons exposed to different oxygen conditions affecting neuronal survival. Under normoxic conditions, TRPML1: (1) showed a wide distribution within soma and along neuronal processes; (2) was stimulated by the synthetic agonist ML-SA1 and the analog of its endogenous modulator, PI(3,5)P2 diC8; (3) its knockdown by siRNA strategy produced an ER Ca2+ accumulation; (4) co-localized and co-immunoprecipitated with the ER-located Ca2+ sensor stromal interacting molecule 1 (STIM1). In cortical neurons lacking STIM1, ML-SA1 and PI(3,5)P2 diC8 failed to induce Ca2+ release and, more deeply, they induced a negligible Ca2+ passage through the channel in neurons transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1. Moreover, TRPML1/STIM1 interplay changed at low-oxygen conditions: both proteins were downregulated during the ischemic preconditioning (IPC) while during IPC followed by 1 hour of normoxia, at which STIM1 is upregulated, TRPML1 protein was reduced. However, during oxygen and glucose deprivation (OGD) followed by reoxygenation, TRPML1 and STIM1 proteins peaked at 8 hours of reoxygenation, when the proteins were co-immunoprecipitated and reactive oxygen species (ROS) hyperproduction was measured in cortical neurons. This may lead to a persistent TRPML1 Ca2+ release and lysosomal Ca2+ loss. Collectively, we showed a new modulation exerted by STIM1 on TRPML1 activity that may differently intervene during hypoxia to regulate organellar Ca2+ homeostasis.
Assuntos
Cálcio/metabolismo , Hipóxia Celular , Lisossomos/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Precondicionamento Isquêmico/métodos , Ratos , Ratos WistarRESUMO
BACKGROUND: The cycad neurotoxin beta-methylamino-L-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. METHODS: By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. RESULTS: We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. CONCLUSION: Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. Video Abstract.
Assuntos
Cálcio , Trocador de Sódio e Cálcio , Diamino Aminoácidos , Animais , Cálcio/metabolismo , Toxinas de Cianobactérias , Neurônios Motores/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Trocador de Sódio e Cálcio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismoRESUMO
Background: An emerging body of evidence indicates an association between anthropogenic particulate matter (PM) and neurodegeneration. Although the historical focus of PM toxicity has been on the cardiopulmonary system, ultrafine PM particles can also exert detrimental effects in the brain. However, only a few studies are available on the harmful interaction between PM and CNS and on the putative pathomechanisms. Methods: Ultrafine PM particles with a diameter < 0.1 µm (PM0.1) and nanoparticles < 20 nm (NP20) were sampled in a lab-scale combustion system. Their effect on cell tracking in the space was studied by time-lapse and high-content microscopy in NSC-34 motor neurons while pHrodo™ Green conjugates were used to detect PM endocytosis. Western blotting analysis was used to quantify protein expression of lysosomal channels (i.e., TRPML1 and TPC2) and autophagy markers. Current-clamp electrophysiology and Fura2-video imaging techniques were used to measure membrane potential, intracellular Ca2+ homeostasis and TRPML1 activity in NSC-34 cells exposed to PM0.1 and NP20. Results: NP20, but not PM0.1, reduced NSC-34 motor neuron movement in the space. Furthermore, NP20 was able to shift membrane potential of motor neurons toward more depolarizing values. PM0.1 and NP20 were able to enter into the cells by endocytosis and exerted mitochondrial toxicity with the consequent stimulation of ROS production. This latter event was sufficient to determine the hyperactivation of the lysosomal channel TRPML1. Consequently, both LC3-II and p62 protein expression increased after 48 h of exposure together with AMPK activation, suggesting an engulfment of autophagy. The antioxidant molecule Trolox restored TRPML1 function and autophagy. Conclusions: Restoring TRPML1 function by an antioxidant agent may be considered a protective mechanism able to reestablish autophagy flux in motor neurons exposed to nanoparticles.
Assuntos
Material Particulado , Canais de Potencial de Receptor Transitório , Material Particulado/toxicidade , Material Particulado/análise , Antioxidantes/farmacologia , Lisossomos/metabolismo , Autofagia , Neurônios Motores/metabolismo , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Benzodiazepinonas/farmacologia , Neurônios Motores/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Pirrolidinas/farmacologia , Trocador de Sódio e Cálcio/agonistas , Medula Espinal/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Taxa de SobrevidaRESUMO
Cyclic adenosine diphosphate ribose (cADPR) is a second messenger involved in the Ca2+ homeostasis. Its chemical instability prompted researchers to tune point by point its structure, obtaining stable analogues featuring interesting biological properties. One of the most challenging derivatives is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine isosterically replaces the adenine. As our research focuses on the synthesis of N1 substituted inosines, in the last few years we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. Interestingly, some of them mobilized Ca2+ ions in PC12 cells. To extend our SAR studies, herein we report on the synthesis of a new stable cIDPR derivative which contains the 2â³S,3â³R dihydroxypentyl chain instead of the northern ribose. Interestingly, the new cyclic derivative and its open precursor induced an increase in intracellular calcium concentration ([Ca2+]i) with the same efficacy of the endogenous cADPR in rat primary cortical neurons.
Assuntos
Cálcio/metabolismo , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/farmacologia , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Neurônios/metabolismo , Ratos , Ratos WistarRESUMO
Background and Purpose- Disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis causes neuronal cell injury in stroke. By contrast, ischemic preconditioning (IPC)-a brief sublethal ischemic episode affording tolerance to a subsequent ischemic insult-restores ER Ca2+ homeostasis. Under physiological conditions, ER calcium content is continuously refilled by the interaction between the ER-located Ca2+ sensor STIM (stromal interacting molecule) 1 and the plasma membrane channel ORAI1 (a structural component of the CRAC calcium channel)-2 key mediators of the store-operated calcium entry (SOCE) mechanism. However, the role played by ORAI1 and STIM1 in stroke and in IPC-induced neuroprotection during stroke remains unknown. Therefore, we explored whether ORAI1 and STIM1 might be involved in stroke pathogenesis and in IPC-induced neuroprotection. Methods- Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia and IPC were induced in rats by transient middle cerebral artery occlusion. Expression of ORAI1 and STIM1 transcripts and proteins and their immunosignals were detected by qRT-PCR, Western blot, and immunocytochemistry, respectively. SOCE and Ca2+ release-activated Ca2+ currents (ICRAC) were measured by Fura-2 AM video imaging and patch-clamp electrophysiology in whole-cell configuration, respectively. Results- STIM1 and ORAI1 protein expression and immunosignals decreased in the ipsilesional temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion followed by reperfusion. Analogously, in primary hypoxic cortical neurons, STIM1 and ORAI1 transcript and protein levels decreased concurrently with SOCE and Ca2+ release-activated Ca2+currents. By contrast, IPC induced SOCE and Ca2+ release-activated Ca2+current upregulation, thereby preventing STIM1 and ORAI1 downregulation induced by oxygen and glucose deprivation+reoxygenation. Silencing of STIM1 or ORAI1 prevented IPC-induced tolerance and caused ER stress, as measured by GRP78 (78-kDa glucose regulated protein) and caspase-3 upregulation. Conclusions- ORAI1 and STIM1, which participate in SOCE, take part in stroke pathophysiology and play an important role in IPC-induced neuroprotection.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Precondicionamento Isquêmico/métodos , Proteínas de Membrana/metabolismo , Neuroproteção/fisiologia , Proteína ORAI1/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Molécula 1 de Interação Estromal/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologiaRESUMO
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related death in industrialized countries. Epidemiologic evidence suggests that obesity promotes aggressive PCa. Recently, a family of Free Fatty Acid (FFA) receptors (FFARs) has been identified and reported to affect several crucial biological functions of tumor cells such as proliferation, invasiveness, and apoptosis. Here we report that oleic acid (OA), one of the most prevalent FFA in human plasma, increases proliferation of highly malignant PC3 and DU-145 PCa cells. Furthermore, docetaxel cytotoxic action, the first-line chemotherapeutic agent for the treatment of androgen-independent PCa, was significantly reduced in the presence of OA, when measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, suggesting that this FFA plays also a role in chemoresistance. OA induced intracellular calcium increase, in part due to the store operated calcium entry (SOCE), measured by a calcium imaging technique. Moreover, PI3K/Akt signaling pathway was enhanced, as revealed by increased Akt phosphorylation levels. Intriguingly, attenuating the expression of FFA1/GPR40, a receptor for long chain FFA including OA, prevented the OA-induced effects. Of relevance, we found that FFA1/GPR40 is significantly overexpressed in tissue specimens of PCa, compared to benign prostatic hyperplasia tissues, at both mRNA and protein expression level, analyzed by Real Time RT-PCR and immunofluorescence experiments, respectively. Our data suggest that OA promotes an aggressive phenotype in PCa cells via FFA1/GPR40, calcium and PI3K/Akt signaling. Thus, FFA1/GPR40, might represent a potential useful prognostic biomarker and therapeutic target for the treatment of advanced PCa.
Assuntos
Ácido Oleico/farmacologia , Neoplasias da Próstata/patologia , Receptores Acoplados a Proteínas G/metabolismo , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Herein, we reported on the synthesis of cpIPP, which is a new structurally-reduced analogue of cyclic ADP-ribose (cADPR), a potent Ca2+-releasing secondary messenger that was firstly isolated from sea urchin eggs extracts. To obtain cpIPP the "northern" ribose of cADPR was replaced by a pentyl chain and the pyrophosphate moiety by a phophono-phosphate anhydride. The effect of the presence of the new phosphono-phosphate bridge on the intracellular Ca2+ release induced by cpIPP was assessed in PC12 neuronal cells in comparison with the effect of the pyrophosphate bridge of the structurally related cyclic N1-butylinosine diphosphate analogue (cbIDP), which was previously synthesized in our laboratories, and with that of the linear precursor of cpIPP, which, unexpectedly, revealed to be the only one provided with Ca2+ release properties.
Assuntos
Cálcio/metabolismo , ADP-Ribose Cíclica/química , ADP-Ribose Cíclica/metabolismo , Óvulo/metabolismo , Ouriços-do-Mar/metabolismo , Animais , Linhagem Celular Tumoral , Neurônios/metabolismo , Células PC12 , Ratos , Transdução de Sinais/fisiologia , Relação Estrutura-AtividadeRESUMO
NGF induces neuronal differentiation by modulating [Ca(2+)]i. However, the role of the three isoforms of the main Ca(2+)-extruding system, the Na(+)/Ca(2+) exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca(2+)]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca(2+) content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na(+) currents and 1,3-benzenedicarboxylic acid, 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na(+)]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca(2+) content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca(2+)]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca(2+) content and PI3K signaling.
Assuntos
Encéfalo/embriologia , Cálcio/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Homeostase , Mutação , Neuritos/metabolismo , Células PC12 , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismoRESUMO
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) is a high-capacity ionic transporter that exchanges 3Na(+) ions for 1Ca(2+) ion. The first 20 amino acids of the f-loop, named exchanger inhibitory peptide (XIP(NCX1)), represent an autoinhibitory region involved in the Na(+)-dependent inactivation of the exchanger. Previous research has shown that an exogenous peptide having the same amino acid sequence as the XIP(NCX1) region exerts an inhibitory effect on NCX activity. In this study, we identified another regulatory peptide, named P1, which corresponds to the 562-688aa region of the exchanger. Patch-clamp analysis revealed that P1 increased the activity of the exchanger, whereas the XIP inhibited it. Furthermore, P1 colocalized with NCX1 thus suggesting a direct binding interaction. In addition, site-directed mutagenesis experiments revealed that the binding and the stimulatory effect of P1 requires a functional XIP(NCX1) domain on NCX1 thereby suggesting that P1 increases the exchanger activity by counteracting the action of this autoinhibitory sequence. Taken together, these results open a new strategy for developing peptidomimetic compounds that, by mimicking the functional pharmacophore of P1, might increase NCX1 activity and thus exert a therapeutic action in those diseases in which an increase in NCX1 activity might be helpful.
Assuntos
Peptídeos Penetradores de Células/farmacologia , Peptídeos/farmacologia , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Cricetinae , Expressão Gênica , Transporte de Íons , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/agonistas , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genéticaRESUMO
The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , Neurônios/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Animais , Morte Celular , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Cricetinae , Cães , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , RatosRESUMO
Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity.
Assuntos
Antitireóideos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Fatores de Tempo , TransfecçãoRESUMO
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Assuntos
Inativação Gênica , Neurônios/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Proteínas Repressoras/metabolismo , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Carbazóis/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação para Baixo , Humanos , Neurônios/citologia , Regiões Promotoras Genéticas , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Resveratrol , Transdução de Sinais , Sirtuína 1/genéticaRESUMO
Cyclic N (1)-pentylinosine monophosphate (cpIMP), a novel simplified inosine derivative of cyclic ADP-ribose (cADPR) in which the N (1)-pentyl chain and the monophosphate group replace the northern ribose and the pyrophosphate moieties, respectively, was synthesized. The role played by the position of the phosphate group in the key cyclization step, which consists in the formation of a phosphodiester bond, was thoroughly investigated. We have also examined the influence of the phosphate bridge on the ability of cpIMP to mobilize Ca(2+) in PC12 neuronal cells in comparison with the pyrophosphate bridge present in the cyclic N (1)-pentylinosine diphosphate analogue (cpIDP) previously synthesized in our laboratories. The preliminary biological tests indicated that cpIMP and cpIDP induce a rapid increase of intracellular Ca(2+) concentration in PC12 neuronal cells.
RESUMO
In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-d-aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death, which were concentration-dependent (10-100 ng/ml) and largest when the adipokine was preincubated for 2h before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by paxilline (Pax, 0.01-1 µM) and iberiotoxin (Ibtx, 1-100 nM), with EC50s of 38 ± 10 nM and 5 ± 2 nM for Pax and Ibtx, respectively, close to those reported for Pax- and Ibtx-induced Ca(2+)- and voltage-activated K(+) channels (Slo1 BK channels) blockade; the BK channel opener NS1619 (1-30 µM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10-100 ng/ml) increased intracellular Ca(2+) levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca(2+) levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases.
Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Camundongos Transgênicos , N-Metilaspartato , Neurônios/metabolismo , Ratos WistarRESUMO
Besides controlling several organellar functions, lysosomal channels also guide the catabolic "self-eating" process named autophagy, which is mainly involved in protein and organelle quality control. Neuronal cells are particularly sensitive to the rate of autophagic flux either under physiological conditions or during the degenerative process. Accordingly, neurodegeneration occurring in Parkinson's (PD), Alzheimer's (AD), and Huntington's Diseases (HD), and Amyotrophic Lateral Sclerosis (ALS) as well as Lysosomal Storage Diseases (LSD) is partially due to defective autophagy and accumulation of toxic aggregates. In this regard, dysfunction of lysosomal ionic homeostasis has been identified as a putative cause of aberrant autophagy. From a therapeutic perspective, Transient Receptor Potential Channel Mucolipin 1 (TRPML1) and Two-Pore Channel isoform 2 (TPC2), regulating lysosomal homeostasis, are now considered promising druggable targets in neurodegenerative diseases. Compelling evidence suggests that pharmacological modulation of TRPML1 and TPC2 may rescue the pathological phenotype associated with autophagy dysfunction in AD, PD, HD, ALS, and LSD. Although pharmacological repurposing has identified several already used drugs with the ability to modulate TPC2, and several tools are already available for the modulation of TRPML1, many efforts are necessary to design and test new entities with much higher specificity in order to reduce dysfunctional autophagy during neurodegeneration.