Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611224

RESUMO

Molded plywood is used for furniture components such as seats, backrests, or integral seat shells, and it must be durable and harmless to health. Molded plywood is made with urea-formaldehyde (UF) adhesives; therefore, the issue of the fillers used in them is important. The potential of using ground beech (Fagus sylvatica L.) bark as an eco-friendly additive in UF adhesives for molded plywood manufacturing was investigated in this work. Wheat flour was used as a reference filler. The beech bark (BB) level as a filler was 10%, a value verified under laboratory conditions. Nine-layer flat and molded plywood were produced under industrial conditions from beech veneers bonded with a UF adhesive mixture. The mechanical (bending strength and bonding quality) and physical (swelling and absorbency values after 2 and 24 h) properties of the industrially fabricated molded plywood were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical properties of the molded plywood with the addition of BB in the adhesive mixture were acceptable and met these standards' requirements. The positive effect of BB in the UF adhesive mixture on a reduction in formaldehyde emissions from the molded plywood was also confirmed. BB, considered to be wood-processing industry waste or a by-product, has significant potential to be used as a filler in UF resins for molded plywood production, providing an environmentally friendly, inexpensive solution for the industrial valorization of bark as a bio-based formaldehyde scavenger.

2.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794543

RESUMO

The aim of the presented research was to determine the suitability of both non-modified and modified buckwheat husk (BH) as a filler for urea-formaldehyde adhesive in plywood production. The effect of two modification methods, acetylation and silanization, was investigated. Infrared spectroscopy outcomes confirmed that both acetylation and silanization of the filler had occurred. Based on the results, it was found that the introduction of BH had a significant effect on both the adhesive properties and the characteristics of the manufactured plywood. The application of non-modified husks led to a reduction in viscosity and an extension of the gelation time, and the produced plywood boards were characterized by reduced bonding quality and increased delamination. Modification of the husk surface by acetylation and silanization with 3-aminopropyltriethoxysilane contributed to the noticeable improvement in the resin properties. On the other hand, the improvement in plywood properties, consisting of the increase in bonding quality and reduced delamination, was observed only in the case of the silanized husk. Furthermore, the use of non-modified and acetylated husk did not significantly influence the formaldehyde emission. The reduction in the investigated emission of formaldehyde was observed only in the case of variants containing 15 and 20% of silanized buckwheat husk.

3.
Molecules ; 17(1): 762-85, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22245943

RESUMO

Polyethylene (PE) is one of the most widely used polymers in many industrial applications. Biomedical uses seem to be attractive, with increasing interest. However, PE it prone to infections and its additional surface treatment is indispensable. An increase in resistance to infections can be achieved by treating PE surfaces with substances containing antibacterial groups such as triclosan (5-Chloro-2-(2,4-dichlorophenoxy)phenol) and chlorhexidine (1,1'-Hexamethylenebis[5-(4-chlorophenyl)biguanide]). This work has examined the impact of selected antibacterial substances immobilized on low-density polyethylene (LDPE) via polyacrylic acid (PAA) grafted on LDPE by low-temperature barrier discharge plasma. This LDPE surface treatment led to inhibition of Escherichia coli and Staphylococcus aureus adhesion; the first causes intestinal disease, peritonitis, mastitis, pneumonia, septicemia, the latter is the reason for wound and urinary tract infections.


Assuntos
Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Gases em Plasma/química , Polietileno/química , Resinas Acrílicas/química , Clorexidina/química , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Glutaral/química , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Termodinâmica , Triclosan/química , Molhabilidade
4.
Materials (Basel) ; 15(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36143787

RESUMO

The aim of this study was to improve the properties of lightweight particleboards by their veneering. The industrially produced wood particles, rotary-cut birch veneer, expanded polystyrene (EPS) granules and urea-formaldehyde (UF) resin were used to manufacture non-veneered and veneered boards in laboratory conditions. The boards were manufactured with different densities of 350, 450 and 550 kg/m3 and with various levels of EPS content 4, 7 and 10%. Boards without EPS granules as the reference were also manufactured. Bending strength (MOR), modulus of elasticity in bending (MOE), internal bond (IB) strength, thickness swelling (TS) and water absorption (WA) of lightweight particleboards were determined. This study confirmed that veneering of lightweight particleboards by birch veneer improved mechanical properties significantly. The MOR and MOE of veneered boards throughout the whole density range of 350-550 kg/m3 meet the requirements of the CEN/TS 16368 for lightweight particleboards types LP1 and LP2. The IB strength of veneered boards only with density of 550 kg/m3 meets the requirements of CEN/TS 16368 (type LP1). The MOR, MOE and IB of non-veneered boards also meet the requirements of CEN/TS 16368 (type LP1) except boards with density of 350 kg/m3 for MOR and MOE, and except densities of 350 and 450 kg/m3 for IB.

5.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500965

RESUMO

The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4'-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.

6.
Polymers (Basel) ; 13(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567731

RESUMO

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.

7.
Polymers (Basel) ; 12(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370172

RESUMO

This research optimizes the process of plywood production to determine its effectiveness in reducing energy and adhesive consumption for more efficient production with the required quality. The influence of selected parameters including veneer treatment (non-densified and densified), plywood structure, temperature, time and pressure of pressing, on the bonding quality and temperature evolution within the veneer stacks during hot pressing was investigated. Rotary-cut, non-densified and densified birch veneers and phenol formaldehyde (PF) adhesive were used to manufacture plywood samples. The effect of pressure and time of pressing on bonding quality of the plywood was determined. Bonding quality was evaluated by determining the shear strength of the plywood samples. The temperature evolution inside the veneer stacks was measured for birch veneers for different pressing temperatures and pressures for different numbers of veneer layers. The heating rate of the veneer stacks increased as the pressing temperature increased and decreased markedly with an increasing number of veneer layers. At a high pressing pressure, the heating rate of the densified veneer stacks was faster than that of non-densified veneers at the same pressure. The use of densified veneers for the production of plywood can lead to a shorter pressing time (17%-50% reduction), lower glue consumption (33.3% reduction) and a lower pressing pressure (22.2% reduction) without negatively impacting the bonding strength of the plywood.

8.
Polymers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150998

RESUMO

In this study, the effect of the veneer-drying process at elevated temperatures on selected properties and formaldehyde emission of plywood panels was determined. We assume that during the veneer drying at high temperatures, more formaldehyde is released from it, and therefore, a lower formaldehyde emission can be expected from the finished plywood. Prior to bonding, birch veneers were dried at 160 °C (control) and 185 °C in an industrial veneer steam dryer (SD) and at 180 °C, 240 °C and 280 °C in an industrial veneer gas dryer (GD). Two types of adhesives were used: urea-formaldehyde (UF) and phenol-formaldehyde (PF) resins. Bonding quality, bending strength and modulus of elasticity in bending, water absorption and thickness swelling of plywood samples were determined. The formaldehyde emission level of samples was also measured. It was concluded from the study that the effects of veneer-drying temperatures on the bonding strength and physical and mechanical properties of plywood panels were significant. Veneer-drying temperatures of 185 °C/SD, 180 °C/GD and 240 °C/GD negatively affected the bending strength and the modulus of elasticity along and across the fibres for both UF and PF plywood samples. Bonding strength mean values obtained from all test panels were above the required value (1.0 MPa) indicated in EN 314-2 standard. The lowest formaldehyde emissions for the UF and PF plywood samples were observed in the samples from veneer dried in a steam dryer at 185 °C/SD.

9.
Polymers (Basel) ; 11(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288498

RESUMO

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea-formaldehyde (UF), phenol-formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa