Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(27): e2304441120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368926

RESUMO

Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.


Assuntos
Dieta , Estado Nutricional , Adolescente , Humanos , DNA de Plantas/genética , Plantas/genética , Código de Barras de DNA Taxonômico
2.
J Allergy Clin Immunol ; 152(6): 1541-1549.e1, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714436

RESUMO

BACKGROUND: The composition of the gut microbiome has been associated with development of atopic conditions such as food allergy (FA) and asthma. African American or Black children with FA have higher rate of asthma compared to their White counterparts. OBJECTIVE: We sought to investigate whether the diversity and relative abundance (RA) of gut microbiota is different between children with FA from different racial backgrounds living in the same cities. Furthermore, we aimed to understand whether the difference in the gut microbiota is associated with asthma in children with FA. METHODS: We analyzed and compared the stool microbiome of a cohort of Black and White children with FA by shotgun genomic sequencing. RESULTS: A total of 152 children with IgE-mediated FA enrolled onto FORWARD (Food Allergy Outcomes Related to White and African American Racial Differences); 30 Black and 122 White children were included. The RA of several bacteria was associated with race and asthma. Most notably the RA of Bacteroides thetaiotaomicron, Chlamydia thrachomatis, Parabacteroides goldsteinii, and Bacteroides eggerthii were significantly higher, while the RA of Bifidobacterium sp CAG:754, Parabacterium johnsonii, Bacteroides intestinalis, and Bifidobacterium breve were significantly lower in stool samples of Black children compared to White children. Asthma was associated with lower RA of B breve, Bifidobacterium catenulatum, Prevotella copri, Veilloella sp CAG:933, and Bacteroides plebius, and higher RA of 3 Bacteroides species. CONCLUSIONS: The observed variations in the gut microbiota of Black and White children such as differences in the Bacteroides and Bifidobacterium species along with their association to history of asthma in our cohort is indicative of their potential role in the higher rate of asthma observed among Black children with FA.


Assuntos
Asma , Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Microbiota , Criança , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia
3.
Pediatr Res ; 91(2): 464-469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022559

RESUMO

The complex physiology and medical requirements of children with sepsis and multiple organ dysfunction syndrome (MODS) challenge traditional care coordination models. While the involvement of multiple clinical subspecialty services is often necessary to support different care processes and individual organ system dysfunctions, it can also delay the diagnostic process, monitoring, and treatment. The logistics of coordinating with many specialty providers for critically ill patients are challenging and time consuming, and often can result in fragmented communication. To address these and other related issues, we developed a new multi-disciplinary consult service focused on streamlining diagnostics, management, and communication for patients with sepsis and MODS-associated immune dysregulation. The service, called the Program in Inflammation, Immunity, and the Microbiome (PrIIMe), is now a hospital-wide clinical consult service at our institution caring for a broad group of patients with immune dysregulation, particularly focusing on patients with sepsis and MODS. In this paper, we summarize the development, structure, and function of the program, as well as the initial impact. This information may be helpful to clinicians and healthcare leaders who are developing multi-disciplinary consult services for children with complex care needs, especially those with sepsis and MODS-associated immune dysregulation. IMPACT: The care of children with sepsis and multiple organ dysfunction-associated immune dysregulation requires rapid and flexible involvement of multiple clinical subspecialists that is difficult to achieve without fragmented care and delayed decision making. In this narrative review we describe the development, structure, and function of a multi-disciplinary consult service at a children's hospital dedicated to helping coordinate management and provide continuity of care for patients with sepsis and multiple organ dysfunction-associated immune dysregulation. This information may be helpful to clinicians and healthcare leaders who are developing multi-disciplinary consult services for children with complex care needs, especially those with sepsis and MODS-associated immune dysregulation.


Assuntos
Insuficiência de Múltiplos Órgãos/terapia , Sepse/terapia , Criança , Humanos , Insuficiência de Múltiplos Órgãos/complicações , Insuficiência de Múltiplos Órgãos/imunologia , Sepse/complicações , Sepse/imunologia
4.
J Pediatr ; 239: 74-80.e1, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416262

RESUMO

OBJECTIVES: To assess rates of asymptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positivity in K-8 schools with risk mitigation procedures in place, and to evaluate SARS-CoV-2 transmission in school and household contacts of these positive individuals. STUDY DESIGN: In this prospective observational study, screening testing for SARS-CoV-2 was performed by oropharyngeal swabbing and polymerase chain reaction (PCR) analysis in students and staff at K-8 private schools in high-risk Chicago ZIP codes. New coronavirus disease 2019 (COVID-19) diagnoses or symptoms among participants, household contacts, and nonparticipants in each school were queried. RESULTS: Among 11 K-8 private schools across 8 Chicago ZIP codes, 468 participants (346 students, 122 staff members) underwent screening testing. At the first school, 17 participants (36%) tested positive, but epidemiologic investigation suggested against in-school transmission. Only 5 participants in the subsequent 10 schools tested positive for an overall 4.7% positivity rate (1.2% excluding school 1). All but 1 positive test among in-person students had high PCR cycle threshold values, suggesting very low SARS-CoV-2 viral loads. In all schools, no additional students, staff, or household contacts reported new diagnoses or symptoms of COVID-19 during the 2 weeks following screening testing. CONCLUSIONS: We identified infrequent asymptomatic COVID-19 in schools in high-risk Chicago communities and did not identify transmission among school staff, students, or their household contacts. These data suggest that COVID-19 mitigation procedures, including masking and physical distancing, are effective in preventing transmission of COVID-19 in schools. These results may inform future strategies for screening testing in K-8 schools.


Assuntos
Doenças Assintomáticas/epidemiologia , COVID-19/diagnóstico , Programas de Rastreamento , Instituições Acadêmicas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Chicago/epidemiologia , Docentes , Humanos , Estudos Prospectivos , Estudantes
5.
Biol Blood Marrow Transplant ; 26(11): 2053-2060, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32682948

RESUMO

Certain anaerobic bacteria are important for maintenance of gut barrier integrity and immune tolerance and may influence the risk of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a single-center retrospective cohort study of allogeneic HSCT recipients to evaluate associations between receipt of antibiotics with an anaerobic spectrum of activity and GVHD outcomes. We identified 1214 children and adults who developed febrile neutropenia between 7 days before and 28 days after HSCT and compared GVHD risk and mortality among patients who received anaerobic antibiotics (piperacillin-tazobactam or carbapenems; n = 491) to patients who received only antibiotics with minimal activity against anaerobes (aztreonam, cefepime, or ceftazidime; n = 723). We performed metagenomic sequencing of serial fecal samples from 36 pediatric patients to compare the effects of specific antibiotics on the gut metagenome. Receipt of anaerobic antibiotics was associated with higher hazards of acute gut/liver GVHD (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.03 to 1.54) and acute GVHD mortality (HR, 1.63; 95% CI, 1.08 to 2.46), but not chronic GVHD diagnosis (HR, 1.04; 95% CI: .84 to 1.28) or chronic GVHD mortality (HR, .88; 95% CI, .53 to 1.45). Anaerobic antibiotics resulted in decreased gut bacterial diversity, reduced abundances of Bifidobacteriales and Clostridiales, and loss of bacterial genes encoding butyrate biosynthesis enzymes from the gut metagenome. Acute gut/liver GVHD was preceded by a sharp decline in bacterial butyrate biosynthesis genes with antibiotic treatment. Our findings demonstrate that exposure to anaerobic antibiotics is associated with increased risks of acute gut/liver GVHD and acute GVHD mortality after allogeneic HSCT. Use of piperacillin-tazobactam or carbapenems should be reserved for febrile neutropenia cases in which anaerobic or multidrug-resistant infections are suspected.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adulto , Anaerobiose , Antibacterianos/uso terapêutico , Criança , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Estudos Retrospectivos , Transplante Homólogo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33077659

RESUMO

We previously identified a small-molecule inhibitor of capsule biogenesis (designated DU011) and identified its target as MprA, a MarR family transcriptional repressor of multidrug efflux pumps. Unlike other proposed MprA ligands, such as salicylate and 2,4-dinitrophenol (DNP), DU011 does not alter Escherichia coli antibiotic resistance and has significantly enhanced inhibition of capsule expression. We hypothesized that the potency and the unique action of DU011 are due to novel interactions with the MprA binding pocket and the conformation assumed by MprA upon binding DU011 relative to other ligands. To understand the dynamics of MprA-DU011 interaction, we performed hydrogen-deuterium exchange mass spectrometry (HDX-MS); this suggested that four peptide regions undergo conformational changes upon binding DU011. We conducted isothermal calorimetric titration (ITC) to quantitatively characterize MprA binding to DU011 and canonical ligands and observed a distinct two-site binding isotherm associated with the binding reaction of MprA to DU011; however, salicylate and DNP showed a one-site binding isotherm with lower affinity. To elucidate the binding pocket(s) of MprA, we selected single point mutants of MprA that included mutated residues predicted to be within the putative binding pocket (Q51A, F58A, and E65D) as well as on or near the DNA-binding domain (L81A, S83T, and T86A). Our ITC studies suggest that two of the tested MprA mutants had lower affinity for DU011: Q51A and F58A. In addition to elucidating the MprA binding pocket for DU011, we studied the binding of these mutants to salicylate and DNP to reveal the binding pockets of these canonical ligands.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Sítios de Ligação , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligantes , Polissacarídeos , Ligação Proteica
7.
New Phytol ; 228(4): 1306-1315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841398

RESUMO

Growth rate represents a fundamental axis of life history variation. Faster growth associated with C4 photosynthesis and annual life history has evolved multiple times, and the resulting diversity in growth is typically explained via resource acquisition and allocation. However, the underlying changes in morphogenesis remain unknown. We conducted a phylogenetic comparative experiment with 74 grass species, conceptualising morphogenesis as the branching and growth of repeating modules. We aimed to establish whether faster growth in C4 and annual grasses, compared with C3 and perennial grasses, came from the faster growth of individual modules or higher rates of module initiation. Morphogenesis produces fast growth in different ways in grasses using C4 and C3 photosynthesis, and in annual compared with perennial species. C4 grasses grow faster than C3 species through a greater enlargement of shoot modules and quicker secondary branching of roots. However, leaf initiation is slower and there is no change in shoot branching. Conversely, faster growth in annuals than perennials is achieved through greater branching and enlargement of shoots, and possibly faster root branching. The morphogenesis of fast growth depends on ecological context, with C4 grasses tending to promote resource capture under competition, and annuals enhancing branching to increase reproductive potential.


Assuntos
Fotossíntese , Poaceae , Morfogênese , Filogenia , Folhas de Planta
8.
J Allergy Clin Immunol ; 143(1): 26-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476499

RESUMO

As an interface with the environment, the skin is a complex ecosystem colonized by many microorganisms that coexist in an established balance. The cutaneous microbiome inhibits colonization with pathogens, such as Staphylococcus aureus, and is a crucial component for function of the epidermal barrier. Moreover, crosstalk between commensals and the immune system is now recognized because microorganisms can modulate both innate and adaptive immune responses. Host-commensal interactions also have an effect on the developing immune system in infants and, subsequently, the occurrence of diseases, such as asthma and atopic dermatitis (AD). Later in life, the cutaneous microbiome contributes to the development and course of skin disease. Accordingly, in patients with AD, a decrease in microbiome diversity correlates with disease severity and increased colonization with pathogenic bacteria, such as S aureus. Early clinical studies suggest that topical application of commensal organisms (eg, Staphylococcus hominis or Roseomonas mucosa) reduces AD severity, which supports an important role for commensals in decreasing S aureus colonization in patients with AD. Advancing knowledge of the cutaneous microbiome and its function in modulating the course of skin disorders, such as AD, might result in novel therapeutic strategies.


Assuntos
Imunidade Adaptativa , Dermatite Atópica , Imunidade Inata , Microbiota/imunologia , Infecções Cutâneas Estafilocócicas , Staphylococcus aureus/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Feminino , Humanos , Masculino , Pele/imunologia , Pele/microbiologia , Pele/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia
9.
Biol Blood Marrow Transplant ; 25(11): 2274-2280, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31326608

RESUMO

The gastrointestinal tract is the predicted reservoir for most bloodstream infections (BSIs) after hematopoietic stem cell transplantation (HSCT). Whole-genome sequencing and comparative genomics have the potential to improve our understanding of the dynamics of gut colonization that precede BSI in HSCT recipients. Within a prospective cohort study of children (age <18 years) undergoing HSCT, 9 subjects met criteria for mucosal barrier injury BSI. We performed whole-genome sequencing of the blood culture isolate and weekly fecal samples preceding the BSI to compare the genetic similarity of BSI isolates to fecal strains. We evaluated temporal associations between antibiotic exposures and the abundances of BSI strains in the gut microbiota and correlated the detection of antibiotic resistance genes with the phenotypic antibiotic resistance of these strains. The median patient age was 2.6 years, and 78% were male. BSIs were caused by Escherichia coli (n = 5), Enterococcus faecium (n = 2), Enterobacter cloacae (n = 1), and Rothia mucilaginosa (n = 1). In the 6 BSI episodes with evaluable comparative genomics, the fecal strains were identical to the blood culture isolate (>99.99% genetic similarity). Gut domination by these strains preceded only 4 of 7 E. coli or E. faecium BSIs by a median of 17 days (range, 6 to 21 days). Increasing abundances of the resulting BSI strains in the gut microbiota were frequently associated with specific antibiotic exposures. E. cloacae and R. mucilaginosa were not highly abundant in fecal samples preceding BSIs caused by these species. The detection of antibiotic resistance genes for ß-lactam antibiotics and vancomycin predicted phenotypic resistance in BSI strains. Bacterial strains causing mucosal barrier injury BSI in pediatric HSCT recipients were observed in the gut microbiota before BSI onset, and changes in the abundances of these strains within the gut preceded most BSI episodes. However, frequent sampling of the gut microbiota and sampling of other ecological niches is likely necessary to effectively predict BSI in HSCT recipients.


Assuntos
Bactérias , Infecções Bacterianas , Farmacorresistência Bacteriana , Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Mucosa Intestinal , Aloenxertos , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Criança , Pré-Escolar , Feminino , Humanos , Mucosa Intestinal/lesões , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Estudos Prospectivos
10.
Biol Blood Marrow Transplant ; 25(4): 756-763, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30481599

RESUMO

Infections and graft-versus-host disease (GVHD) have historically resulted in high mortality among children undergoing umbilical cord blood transplantation (UCBT). However, recent advances in clinical practice have likely improved outcomes of these patients. We conducted a retrospective cohort study of children (<18years of age) undergoing UCBT at Duke University between January 1, 1995 and December 31, 2014. We compared 2-year all-cause and cause-specific mortality during 3 time periods based on year of transplantation (1995 to 2001, 2002 to 2007, and 2008 to 2014). We used multivariable Cox regression to identify demographic and UCBT characteristics that were associated with all-cause mortality, transplantation-related mortality, and death from invasive aspergillosis after adjustment for time period. During the 20-year study period 824 children underwent UCBT. Two-year all-cause mortality declined from 48% in 1995 to 2001 to 30% in 2008 to 2014 (P = .0002). White race and nonmalignant UCBT indications were associated with lower mortality. Black children tended to have a higher risk of death for which GVHD (18% versus 11%; P = .06) or graft failure (9% versus 3%; P = .01) were contributory than white children. Comparing 2008 to 2014 with 1995 to 2001, more than half (59%) of the reduced mortality was attributable to a reduction in infectious mortality, with 45% specifically related to reduced mortality from invasive aspergillosis. Antifungal prophylaxis with voriconazole was associated with lower mortality from invasive aspergillosis than low-dose amphotericin B lipid complex (hazard ratio, .09; 95% confidence interval, .01 to .76). With the decline in mortality from invasive aspergillosis, adenovirus and cytomegalovirus have become the most frequentinfectious causes of death in children after UCBT. Advances in clinical practice over the past 20years improved survival of children after UCBT. Reduced mortality from infections, particularly invasive aspergillosis, accounted for the largest improvement in survival and was associated with use of voriconazole for antifungal prophylaxis.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/mortalidade , Estudos de Coortes , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Estudos Retrospectivos , Taxa de Sobrevida , Fatores de Tempo
11.
Biol Blood Marrow Transplant ; 24(9): 1861-1865, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894730

RESUMO

Autopsy may confirm clinical diagnoses or identify conditions that were not suspected prior to a patient's death. Previous studies evaluating the utility of autopsy in hematopoietic stem cell transplant (HSCT) recipients yielded conflicting results. We conducted a retrospective cohort study of children (<18 years of age) undergoing allogeneic HSCT at Duke University who died of any cause between January 1, 1995, and December 31, 2016. We evaluated associations between patient characteristics and autopsy performance using chi-square or Fisher exact tests. We reviewed autopsy reports to determine the concordance between preautopsy causes of death and pathological diagnoses identified on autopsy. We classified unexpected diagnoses on autopsy using criteria developed by Goldman et al. We evaluated for temporal changes in the autopsy consent rate and the frequency of unexpected diagnoses on autopsy using Cochran-Armitage tests. During the 22-year study period, 475 patients died and had data available on autopsy performance, and 130 (27%) of these patients underwent autopsy. The autopsy consent rate declined over time (P < .0001), with autopsies being performed for 40% of deaths in 1995 to 1999 and 17% of deaths in 2009 to 2016. White patients were more likely to undergo autopsy than nonwhite patients (P = .03). There were no associations between autopsy performance and patient age, sex, HSCT indication, or HSCT donor. Unexpected diagnoses were identified in 31 (24%) autopsies. The proportion of autopsies with an unexpected diagnosis did not change during the study period (P = .45). However, infectious diagnoses that would have led to a change in management were more frequently identified on autopsies in 1995 to 2003 than in 2004 to 2016 (20% versus 0%; P = .001). The autopsy consent rate for pediatric HSCT recipients at our institution has declined substantially over the past several decades. The utility of autopsy in this patient population remains high despite a reduction in the identification of unexpected infections.


Assuntos
Autopsia/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Retrospectivos
12.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794027

RESUMO

Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response.IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Adenoviridae/genética , DNA Viral/genética , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adenoviridae/imunologia , Animais , Animais Recém-Nascidos , Formação de Anticorpos/imunologia , Sequência de Bases , Reações Cruzadas/imunologia , DNA Viral/imunologia , Feminino , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Vacinação
13.
PLoS Pathog ; 12(10): e1005944, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760194

RESUMO

Kingella kingae is an encapsulated gram-negative organism that is a common cause of osteoarticular infections in young children. In earlier work, we identified a glycosyltransferase gene called csaA that is necessary for synthesis of the [3)-ß-GalpNAc-(1→5)-ß-Kdop-(2→] polysaccharide capsule (type a) in K. kingae strain 269-492. In the current study, we analyzed a large collection of invasive and carrier isolates from Israel and found that csaA was present in only 47% of the isolates. Further examination of this collection using primers based on the sequence that flanks csaA revealed three additional gene clusters (designated the csb, csc, and csd loci), all encoding predicted glycosyltransferases. The csb locus contains the csbA, csbB, and csbC genes and is associated with a capsule that is a polymer of [6)-α-GlcpNAc-(1→5)-ß-(8-OAc)Kdop-(2→] (type b). The csc locus contains the cscA, cscB, and cscC genes and is associated with a capsule that is a polymer of [3)-ß-Ribf-(1→2)-ß-Ribf-(1→2)-ß-Ribf-(1→4)-ß-Kdop-(2→] (type c). The csd locus contains the csdA, csdB, and csdC genes and is associated with a capsule that is a polymer of [P-(O→3)[ß-Galp-(1→4)]-ß-GlcpNAc-(1→3)-α-GlcpNAc-1-] (type d). Introduction of the csa, csb, csc, and csd loci into strain KK01Δcsa, a strain 269-492 derivative that lacks the native csaA gene, was sufficient to produce the type a capsule, type b capsule, type c capsule, and type d capsule, respectively, indicating that these loci are solely responsible for determining capsule type in K. kingae. Further analysis demonstrated that 96% of the invasive isolates express either the type a or type b capsule and that a disproportionate percentage of carrier isolates express the type c or type d capsule. These results establish that there are at least four structurally distinct K. kingae capsule types and suggest that capsule type plays an important role in promoting K. kingae invasive disease.


Assuntos
Cápsulas Bacterianas/química , Proteínas de Bactérias/química , Kingella kingae/patogenicidade , Infecções por Neisseriaceae/patologia , Polissacarídeos Bacterianos/química , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas , Genes Bacterianos , Glicosiltransferases/genética , Kingella kingae/genética , Virulência/fisiologia
14.
J Pediatr ; 181: 93-101.e6, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27856001

RESUMO

OBJECTIVE: To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. STUDY DESIGN: Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. RESULTS: Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. CONCLUSION: Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. TRIAL REGISTRATION: ClinicalTrials.gov:NCT01306838.


Assuntos
Suplementos Nutricionais , Nutrição Enteral/métodos , Enterostomia , Ácidos Graxos Insaturados/administração & dosagem , Microbioma Gastrointestinal , Feminino , Óleos de Peixe/administração & dosagem , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Valores de Referência , Medição de Risco , Óleo de Cártamo/administração & dosagem , Resultado do Tratamento
15.
Hepatology ; 63(3): 764-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26600078

RESUMO

UNLABELLED: Several animal studies have emphasized the role of gut microbiota in nonalcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remain scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, that is, nonalcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Fifty-seven patients with biopsy-proven NAFLD were enrolled. Taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Thirty patients had F0/F1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these two bacteria generated three patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, Kyoto Encyclopedia of Genes and Genomes pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. CONCLUSION: NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre-/probiotics therapies.


Assuntos
Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Idoso , Fezes/microbiologia , Feminino , Fibrose , Humanos , Fígado/patologia , Masculino , Metagenoma , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia
16.
J Infect Dis ; 213(8): 1330-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671885

RESUMO

BACKGROUND: Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract and invasive infections worldwide, is rapidly acquiring multidrug resistance, hastening the need for selective new anti-infective agents. Here we demonstrate the molecular target of DU011, our previously discovered potent, nontoxic, small-molecule inhibitor of UPEC polysaccharide capsule biogenesis and virulence. METHODS: Real-time polymerase chain reaction analysis and a target-overexpression drug-suppressor screen were used to localize the putative inhibitor target. A thermal shift assay quantified interactions between the target protein and the inhibitor, and a novel DNase protection assay measured chemical inhibition of protein-DNA interactions. Virulence of a regulatory target mutant was assessed in a murine sepsis model. RESULTS: MprA, a MarR family transcriptional repressor, was identified as the putative target of the DU011 inhibitor. Thermal shift measurements indicated the formation of a stable DU011-MprA complex, and DU011 abrogated MprA binding to its DNA promoter site. Knockout of mprA had effects similar to that of DU011 treatment of wild-type bacteria: a loss of encapsulation and complete attenuation in a murine sepsis model, without any negative change in antibiotic resistance. CONCLUSIONS: MprA regulates UPEC polysaccharide encapsulation, is essential for UPEC virulence, and can be targeted without inducing antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Cápsulas Bacterianas/metabolismo , Descoberta de Drogas/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Técnicas de Silenciamento de Genes/métodos , Proteínas Repressoras/antagonistas & inibidores , Escherichia coli Uropatogênica/genética , Animais , Antibacterianos/química , Cápsulas Bacterianas/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Virulência
17.
Infect Immun ; 84(6): 1775-1784, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27045037

RESUMO

Kingella kingae is a common cause of invasive disease in young children and was recently found to produce a polysaccharide capsule containing N-acetylgalactosamine (GalNAc) and ß-3-deoxy-d-manno-octulosonic acid (ßKdo). Given the role of capsules as important virulence factors and effective vaccine antigens, we set out to determine the genetic determinants of K. kingae encapsulation. Using a transposon library and a screen for nonencapsulated mutants, we identified the previously identified ctrABCD (ABC transporter) operon, a lipA (kpsC)-like gene, a lipB (kpsS)-like gene, and a putative glycosyltransferase gene designated csaA (capsule synthesis type a gene A). These genes were found to be present at unlinked locations scattered throughout the genome, an atypical genetic arrangement for Gram-negative bacteria that elaborate a capsule dependent on an ABC-type transporter for surface localization. The csaA gene product contains a predicted glycosyltransferase domain with structural homology to GalNAc transferases and a predicted capsule synthesis domain with structural homology to Kdo transferases, raising the possibility that this enzyme is responsible for alternately linking GalNAc to ßKdo and ßKdo to GalNAc. Consistent with this conclusion, mutation of the DXD motif in the GalNAc transferase domain and of the HP motif in the Kdo transferase domain resulted in a loss of encapsulation. Examination of intracellular and surface-associated capsule in deletion mutants and complemented strains further implicated the lipA (kpsC)-like gene, the lipB (kpsS)-like gene, and the csaA gene in K. kingae capsule production. These data define the genetic requirements for encapsulation in K. kingae and demonstrate an atypical organization of capsule synthesis, assembly, and export genes.


Assuntos
Cápsulas Bacterianas/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Glicosiltransferases/genética , Kingella kingae/genética , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Kingella kingae/metabolismo , Mutação , Óperon , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo
18.
Infect Immun ; 84(7): 2022-2030, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113355

RESUMO

Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.


Assuntos
Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/imunologia , Mucosa Nasal/microbiologia , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/microbiologia , Animais , Carga Bacteriana , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Infecções por Haemophilus/patologia , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Camundongos , Mucina-5AC/biossíntese , Mucina-5AC/genética , Muco , Infecções do Sistema Genital/patologia
19.
Biol Reprod ; 94(5): 119, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27009041

RESUMO

Preterm premature rupture of membranes (PPROM) is often associated with intra-amniotic inflammation and infection. Current understanding of the pathogenesis of PPROM includes activation of pro-inflammatory cytokines and proteolytic enzymes leading to compromise of membrane integrity. The impact of exposure to bacterial pathogens, including Ureaplasma parvum, on gestational membranes is poorly understood. Our objective was to develop a dual-chamber system to characterize the inflammatory response of gestational membranes to U. parvum in a directional nature. Full-thickness human gestational membrane explants, with either choriodecidua or amnion oriented superiorly, were suspended between two washers in a cylindrical device, creating two distinct compartments. Brilliant green dye was introduced into the top chamber to assess the integrity of the system. Tissue viability was evaluated after 72 h using a colorimetric cell proliferation assay. Choriodecidua or amnion was exposed to three doses of U. parvum and incubated for 24 h. Following treatment, media from each compartment were used for quantification of U. parvum (quantitative PCR), interleukin (IL)-8 (enzyme-linked immunosorbent assay), and matrix metalloproteinase (MMP)-2 and MMP-9 activity (zymography). We observed that system integrity and explant viability were maintained over 72 h. Dose-dependent increases in recovered U. parvum, IL-8 concentration, and MMP-2 activity were detected in both compartments. Significant differences in IL-8 concentration and MMP-9 activity were found between the choriodecidua and amnion. This tissue explant system can be used to investigate the inflammatory consequences of directional bacterial exposure for gestational membranes and provides insight into the pathogenesis of PPROM and infectious complications of pregnancy.


Assuntos
Corioamnionite/microbiologia , Corioamnionite/patologia , Membranas Extraembrionárias/patologia , Complicações Infecciosas na Gravidez/patologia , Técnicas de Cultura de Tecidos/métodos , Infecções por Ureaplasma/patologia , Ureaplasma/fisiologia , Âmnio/metabolismo , Corioamnionite/metabolismo , Citocinas/metabolismo , Membranas Extraembrionárias/metabolismo , Feminino , Ruptura Prematura de Membranas Fetais/metabolismo , Ruptura Prematura de Membranas Fetais/patologia , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/microbiologia , Técnicas de Cultura de Tecidos/instrumentação , Ureaplasma/isolamento & purificação , Infecções por Ureaplasma/metabolismo
20.
J Urol ; 191(5): 1454-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24342147

RESUMO

PURPOSE: Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. MATERIALS AND METHODS: Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. RESULTS: Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1ß, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1ß and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. CONCLUSIONS: Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined.


Assuntos
Cistite/microbiologia , Infecções por Escherichia coli/complicações , Bexiga Urinaria Neurogênica/complicações , Infecções Urinárias/complicações , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Bexiga Urinaria Neurogênica/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa