Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ther ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38946142

RESUMO

The chimeric antigen receptor (CAR) derived from the CD30 specific murine antibody, HRS-3, has produced promising clinical efficacy with a favorable safety profile in the treatment of relapsed or refractory CD30-positive lymphomas. However, persistence of the autologous CAR T cells was brief, and many patients relapsed a year after treatment. The lack of persistence may be attributed to the use of a wildtype IgG1 spacer that can associate with Fc receptors. We first identified the cysteine rich domain (CRD) 5 of CD30 as the primary binding epitope of HRS-3 and armed with this insight, attempted to improve the HRS-3 CAR functionality with a panel of novel spacer designs. We demonstrate that HRS-3 CARs with OX40 and 4-1BB derived spacers exhibited similar anti-tumor efficacy, circumvented interactions with Fc receptors and secreted lower levels of cytokines in vitro than a CAR employing the IgG1 spacer. Humanization of the HRS-3 scFv coupled with the 4-1BB spacer preserved potent on-target, on-tumor efficacy, and on-target, off-tumor safety. In a lymphoma mouse model of high tumor burden, T cells expressing a humanized HRS-3 CD30.CARs with the 4-1BB spacer potently killed tumors with low levels of circulating inflammatory cytokines, providing a promising candidate for future clinical development in the treatment of CD30-positive malignancies.

2.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32907977

RESUMO

Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sítio Alostérico , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Dengue/virologia , Transcriptase Reversa do HIV , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , RNA Polimerase Dependente de RNA/efeitos dos fármacos , RNA Polimerase Dependente de RNA/genética , Replicon , Alinhamento de Sequência , Análise de Sequência de Proteína , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
3.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958712

RESUMO

Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.


Assuntos
Dengue , Guanosina/análogos & derivados , Pró-Fármacos , Amidas , Animais , Antivirais/farmacologia , Dengue/tratamento farmacológico , Cães , Feminino , Hepacivirus , Leucócitos Mononucleares , Masculino , Ácidos Fosfóricos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
4.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597763

RESUMO

Flavivirus nonstructural protein 5 (NS5) contains an N-terminal methyltransferase (MTase) domain and a C-terminal polymerase (RNA-dependent RNA polymerase [RdRp]) domain fused through a 9-amino-acid linker. While the individual NS5 domains are structurally conserved, in the full-length protein, their relative orientations fall into two classes: the NS5 proteins from Japanese encephalitis virus (JEV) and Zika virus (ZIKV) adopt one conformation, while the NS5 protein from dengue virus serotype 3 (DENV3) adopts another. Here, we report a crystallographic structure of NS5 from DENV2 in a conformation similar to the extended one seen in JEV and ZIKV NS5 crystal structures. Replacement of the DENV2 NS5 linker with DENV1, DENV3, DENV4, JEV, and ZIKV NS5 linkers had modest or minimal effects on in vitro DENV2 MTase and RdRp activities. Heterotypic DENV NS5 linkers attenuated DENV2 replicon growth in cells, while the JEV and ZIKV NS5 linkers abolished replication. Thus, the JEV and ZIKV linkers likely hindered essential DENV2 NS5 interactions with other viral or host proteins within the virus replicative complex. Overall, this work sheds light on the dynamics of the multifunctional flavivirus NS5 protein and its interdomain linker. Targeting the NS5 linker is a possible strategy for producing attenuated flavivirus strains for vaccine design.IMPORTANCE Flaviviruses include important human pathogens, such as dengue virus and Zika virus. NS5 is a nonstructural protein essential for flavivirus RNA replication with dual MTase and RdRp enzyme activities and thus constitutes a major drug target. Insights into NS5 structure, dynamics, and evolution should inform the development of antiviral inhibitors and vaccine design. We found that NS5 from DENV2 can adopt a conformation resembling that of NS5 from JEV and ZIKV. Replacement of the DENV2 NS5 linker with the JEV and ZIKV NS5 linkers abolished DENV2 replication in cells, without significantly impacting in vitro DENV2 NS5 enzymatic activities. We propose that heterotypic flavivirus NS5 linkers impede DENV2 NS5 protein-protein interactions that are essential for virus replication.


Assuntos
Vírus da Dengue/química , Vírus da Encefalite Japonesa (Espécie)/química , Proteínas não Estruturais Virais/química , Zika virus/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Replicon , Alinhamento de Sequência , Sorogrupo , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
5.
PLoS Pathog ; 12(8): e1005737, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27500641

RESUMO

Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket"). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 µM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Antivirais/química , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Domínios Proteicos , RNA Polimerase Dependente de RNA/química , Ressonância de Plasmônio de Superfície , Proteínas não Estruturais Virais/química
6.
Bioorg Med Chem Lett ; 28(13): 2324-2327, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801997

RESUMO

To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Pró-Fármacos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/farmacologia , Antivirais/química , Antivirais/toxicidade , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Células Hep G2 , Humanos , Leucócitos Mononucleares/virologia , Estrutura Molecular , Sistema Fagocitário Mononuclear/virologia , Pró-Fármacos/química , Pró-Fármacos/toxicidade , Relação Estrutura-Atividade
7.
J Biol Chem ; 291(16): 8541-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872970

RESUMO

We performed a fragment screen on the dengue virus serotype 3 RNA-dependent RNA polymerase using x-ray crystallography. A screen of 1,400 fragments in pools of eight identified a single hit that bound in a novel pocket in the protein. This pocket is located in the polymerase palm subdomain and conserved across the four serotypes of dengue virus. The compound binds to the polymerase in solution as evidenced by surface plasmon resonance and isothermal titration calorimetry analyses. Related compounds where a phenyl is replaced by a thiophene show higher affinity binding, indicating the potential for rational design. Importantly, inhibition of enzyme activity correlated with the binding affinity, showing that the pocket is functionally important for polymerase activity. This fragment is an excellent starting point for optimization through rational structure-based design.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Vírus da Dengue/enzimologia , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Estrutura Terciária de Proteína
8.
J Biol Chem ; 288(43): 31105-14, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24025331

RESUMO

The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263-271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1-4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265-900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272-900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed "preinitiation" conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269-271 interact with the RdRp domain and suggests that residues 263-268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp.


Assuntos
Vírus da Dengue/fisiologia , Metiltransferases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Replicação Viral/fisiologia , Estabilidade Enzimática/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
Cancer Immunol Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833270

RESUMO

Allogeneic chimeric antigen receptor (CAR)-expressing T cells offer many advantages over autologous therapies, but their benefits are curtailed by graft-versus-host disease (GvHD) and elimination by recipient immune cells. Moreover, just as with autologous therapies, allogeneic CAR T cells are susceptible to activation-induced cell death (AICD) caused by chronic antigen exposure (CAE). Granzyme B (GzmB) and Fas/FasL-initiated, caspase-mediated apoptosis are key mechanisms of T-cell death caused by T/NK cell-mediated allorejection or CAE. We explored a protective strategy of engineering CAR T cells to overexpress variants of the GzmB-specific serine protease inhibitor, SerpinB9 (SB9), to improve allogeneic T-cell persistence and antitumor efficacy. We showed that the overexpression of an SB9 variant with broadened caspase specificity, SB9(CAS), not only significantly reduced rejection of allogeneic CAR T cells, but also increased their resistance to AICD and enabled them to thrive better under CAE, thus improving allogeneic T-cell persistence and antitumor activity in vitro and in vivo. In addition, while SB9(CAS)-overexpression improved the efficacy of allogeneic CAR T-cell therapy by conferring protection to cell death, we did not observe any autonomous growth and the engineered CAR T cells were still susceptible to an inducible suicide switch. Hence, SB9(CAS)-overexpression is a promising strategy that can strengthen current development of cell therapies, broadening their applications to address unmet medical needs.

10.
J Virol ; 86(1): 438-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031935

RESUMO

Dengue is a mosquito-borne viral hemorrhagic disease that is a major threat to human health in tropical and subtropical regions. Here we report crystal structures of a peptide covalently bound to dengue virus serotype 3 (DENV-3) protease as well as the serine-protease inhibitor aprotinin bound to the same enzyme. These structures reveal, for the first time, a catalytically active, closed conformation of the DENV protease. In the presence of the peptide, the DENV-3 protease forms the closed conformation in which the hydrophilic ß-hairpin region of NS2B wraps around the NS3 protease core, in a manner analogous to the structure of West Nile virus (WNV) protease. Our results confirm that flavivirus proteases form the closed conformation during proteolysis, as previously proposed for WNV. The current DENV-3 protease structures reveal the detailed interactions at the P4' to P3 sites of the substrate. The new structural information explains the sequence preference, particularly for long basic residues in the nonprime side, as well as the difference in substrate specificity between the WNV and DENV proteases at the prime side. Structural analysis of the DENV-3 protease-peptide complex revealed a pocket that is formed by residues from NS2B and NS3; this pocket also exists in the WNV NS2B/NS3 protease structure and could be targeted for potential antivirus development. The structural information presented in the current study is invaluable for the design of specific inhibitors of DENV protease.


Assuntos
Vírus da Dengue/enzimologia , Serina Endopeptidases/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Vírus da Dengue/química , Vírus da Dengue/genética , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
Biochem J ; 434(3): 537-48, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21204785

RESUMO

Mammalian Pellino isoforms are phosphorylated by IRAK (interleukin receptor associated kinase) 1/IRAK4 in vitro, converting them into active E3 ubiquitin ligases. In the present paper we report a striking enhancement in both transcription of the gene encoding Pellino 1 and Pellino 1 protein expression when murine BMDMs (bone-marrow-derived macrophages) are stimulated with LPS (lipopolysaccharide) or poly(I:C). This induction occurs via a TRIF [TIR (Toll/interleukin-1 receptor)-domain-containing adaptor-inducing interferon-ß]-dependent IRAK-independent pathway and is prevented by inhibition of the IKK [IκB (inhibitor of nuclear factor κB) kinase]-related protein kinases, TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1} and IKKε. Pellino 1 is not induced in IRF3 (interferon regulatory factor 3)-/- BMDMs, and its induction is only reduced slightly in type 1 interferon receptor-/- BMDMs, identifying Pellino 1 as a new IRF3-dependent gene. We also identify Pellino 1 in a two-hybrid screen using IKKε as bait, and show that IKKε/TBK1 activate Pellino 1 in vitro by phosphorylating Ser76, Thr288 and Ser293. Moreover, we show that the E3 ligase activity of endogenous Pellino 1 is activated in LPS- or poly(I:C)-stimulated macrophages. This occurs more rapidly than the increase in Pellino 1 mRNA and protein expression, is prevented by the inhibition of IKKε/TBK1 and is reversed by phosphatase treatment. Thus IKKε/TBK1 mediate the activation of Pellino 1's E3 ligase activity, as well as inducing the transcription of its gene and protein expression in response to TLR3 and TLR4 agonists.


Assuntos
Quinase I-kappa B/fisiologia , Proteínas Nucleares/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Humanos , Fator Regulador 3 de Interferon/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fosforilação , Poli I-C/farmacologia , Receptor de Interferon alfa e beta/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas , Ubiquitina-Proteína Ligases/metabolismo
12.
Sci Transl Med ; 13(579)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536278

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Cães , Camundongos , Modelos Animais , Ratos , Sorogrupo
13.
FEBS Lett ; 582(29): 4023-31, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19026643

RESUMO

The protein kinase transforming-growth-factor-beta-activated kinase-1 (TAK1) is a key regulator in the pro-inflammatory signaling pathway and is activated by tumor necrosis factor-alpha, interleukin-1 (IL-1) and lipopolysaccharide (LPS). We describe the identification of TAK1 as a client protein of the 90 kDa heat-shock protein (Hsp90)/cell division cycle protein 37 (Cdc37) chaperones. However, Hsp90 is not required for the activation of TAK1 as short exposure to the Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) did not affect its activation by LPS or IL-1. Prolonged treatment of cells with 17-AAG inhibits Hsp90 and downregulates TAK1. Our results suggest that Hsp90 is required for the folding and stability of TAK1 but is displaced and no longer required when TAK1 is complexed to TAK1-binding protein-1 (TAB1).


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Inflamação/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzoquinonas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Dobramento de Proteína , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese
14.
J Biomol Screen ; 20(1): 153-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25252731

RESUMO

Dengue virus (DENV) is the most significant mosquito-borne viral pathogen in the world and is the cause of dengue fever. The DENV RNA-dependent RNA polymerase (RdRp) is conserved among the four viral serotypes and is an attractive target for antiviral drug development. During initiation of viral RNA synthesis, the polymerase switches from a "closed" to "open" conformation to accommodate the viral RNA template. Inhibitors that lock the "closed" or block the "open" conformation would prevent viral RNA synthesis. Herein, we describe a screening campaign that employed two biochemical assays to identify inhibitors of RdRp initiation and elongation. Using a DENV subgenomic RNA template that promotes RdRp de novo initiation, the first assay measures cytosine nucleotide analogue (Atto-CTP) incorporation. Liberated Atto fluorophore allows for quantification of RdRp activity via fluorescence. The second assay uses the same RNA template but is label free and directly detects RdRp-mediated liberation of pyrophosphates of native ribonucleotides via liquid chromatography-mass spectrometry. The ability of inhibitors to bind and stabilize a "closed" conformation of the DENV RdRp was further assessed in a differential scanning fluorimetry assay. Last, active compounds were evaluated in a renilla luciferase-based DENV replicon cell-based assay to monitor cellular efficacy. All assays described herein are medium to high throughput, are robust and reproducible, and allow identification of inhibitors of the open and closed forms of DENV RNA polymerase.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Testes de Sensibilidade Microbiana/métodos , Cromatografia Líquida , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Dengue/genética , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Descoberta de Drogas/normas , Avaliação Pré-Clínica de Medicamentos/normas , Ensaios de Triagem em Larga Escala/normas , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Testes de Sensibilidade Microbiana/normas , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
15.
Antiviral Res ; 119: 36-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896272

RESUMO

Dengue virus (DENV) NS5 protein comprises an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain (RdRp). DENV RdRp is responsible for viral RNA synthesis via a de novo initiation mechanism and represents an attractive target for anti-viral therapy. Herein we describe the characterization of its de novo initiation activities by PAGE analyses and the knowledge gained was used to develop a fluorescent-based assay. A highly processive and robust assay was achieved by addition of cysteine in the assay buffer. This stabilized the apo-enzyme, and rendered optimal de novo initiation activity while balancing its intrinsic terminal transferase activity. Steady-state kinetic parameters of the NTP and RNA substrates under these optimal conditions were determined for DENV1-4 FL NS5. Heavy metal ions such as Zn(++) and Co(++) as well as high levels of monovalent salts, suppressed DENV polymerase de novo initiation activities. This assay was validated with nucleotide chain terminators and used to screen two diverse small library sets. The screen data obtained was further compared with concurrent screens performed with a DENV polymerase elongation fluorescent assay utilizing pre-complexed enzyme-RNA. A higher hit-rate was obtained for the de novo initiation assay compared to the elongation assay (∼2% versus ∼0.1%). All the hits from the latter assay are also identified in the de novo initiation assay, indicating that the de novo initiation assay performed with the stabilized apo-enzyme has the advantage of providing additional chemical starting entities for inhibiting this enzyme.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Apoenzimas/metabolismo , Cisteína/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Estabilidade Enzimática , Humanos , Cinética , Testes de Sensibilidade Microbiana , RNA Viral/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Transcrição Gênica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação
16.
BMC Res Notes ; 2: 251, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20003470

RESUMO

BACKGROUND: Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. FINDINGS: We present the crystal structure at 3.0 A resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. CONCLUSIONS: The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa