Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(9): 1792-1806, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411538

RESUMO

The Finnish population is a unique example of a genetic isolate affected by a recent founder event. Previous studies have suggested that the ancestors of Finnic-speaking Finns and Estonians reached the circum-Baltic region by the 1st millennium BC. However, high linguistic similarity points to a more recent split of their languages. To study genetic connectedness between Finns and Estonians directly, we first assessed the efficacy of imputation of low-coverage ancient genomes by sequencing a medieval Estonian genome to high depth (23×) and evaluated the performance of its down-sampled replicas. We find that ancient genomes imputed from >0.1× coverage can be reliably used in principal-component analyses without projection. By searching for long shared allele intervals (LSAIs; similar to identity-by-descent segments) in unphased data for >143,000 present-day Estonians, 99 Finns, and 14 imputed ancient genomes from Estonia, we find unexpectedly high levels of individual connectedness between Estonians and Finns for the last eight centuries in contrast to their clear differentiation by allele frequencies. High levels of sharing of these segments between Estonians and Finns predate the demographic expansion and late settlement process of Finland. One plausible source of this extensive sharing is the 8th-10th centuries AD migration event from North Estonia to Finland that has been proposed to explain uniquely shared linguistic features between the Finnish language and the northern dialect of Estonian and shared Christianity-related loanwords from Slavic. These results suggest that LSAI detection provides a computationally tractable way to detect fine-scale structure in large cohorts.


Assuntos
Alelos , DNA Antigo/análise , Genoma Humano , Migração Humana/história , Linhagem , Estônia , Feminino , Finlândia , Frequência do Gene , Genealogia e Heráldica , Sequenciamento de Nucleotídeos em Larga Escala , História do Século XXI , História Antiga , História Medieval , Humanos , Idioma/história , Masculino
2.
Am J Hum Genet ; 106(4): 453-466, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197076

RESUMO

Identity-by-descent (IBD) segments are a useful tool for applications ranging from demographic inference to relationship classification, but most detection methods rely on phasing information and therefore require substantial computation time. As genetic datasets grow, methods for inferring IBD segments that scale well will be critical. We developed IBIS, an IBD detector that locates long regions of allele sharing between unphased individuals, and benchmarked it with Refined IBD, GERMLINE, and TRUFFLE on 3,000 simulated individuals. Phasing these with Beagle 5 takes 4.3 CPU days, followed by either Refined IBD or GERMLINE segment detection in 2.9 or 1.1 h, respectively. By comparison, IBIS finishes in 6.8 min or 7.8 min with IBD2 functionality enabled: speedups of 805-946× including phasing time. TRUFFLE takes 2.6 h, corresponding to IBIS speedups of 20.2-23.3×. IBIS is also accurate, inferring ≥7 cM IBD segments at quality comparable to Refined IBD and GERMLINE. With these segments, IBIS classifies first through third degree relatives in real Mexican American samples at rates meeting or exceeding other methods tested and identifies fourth through sixth degree pairs at rates within 0.0%-2.0% of the top method. While allele frequency-based approaches that do not detect segments can infer relationship degrees faster than IBIS, the fastest are biased in admixed samples, with KING inferring 30.8% fewer fifth degree Mexican American relatives correctly compared with IBIS. Finally, we ran IBIS on chromosome 2 of the UK Biobank dataset and estimate its runtime on the autosomes to be 3.3 days parallelized across 128 cores.


Assuntos
Análise de Sequência/métodos , Alelos , Cromossomos Humanos Par 2/genética , Frequência do Gene/genética , Genoma Humano/genética , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
3.
PLoS Genet ; 15(12): e1007979, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860654

RESUMO

Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim.


Assuntos
Mapeamento Cromossômico/métodos , Simulação por Computador , Caracteres Sexuais , Feminino , Variação Genética , Genética Populacional , Genoma Humano , Humanos , Masculino , Modelos Genéticos , Linhagem , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa