Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Inorg Chem ; 63(7): 3428-3435, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38324263

RESUMO

Subjecting phosphotungstic acid solutions to low pH in combination with introduction of polyvalent cations led to the formation of nanostructured microspheres of approximately 2 µm in size, as shown by scanning electron microscopy, which were almost insoluble and resistant to degradation at neutral and high pH. These microspheres were composed of secondary nanospheres with diameters around 20 nm as revealed by transmission electron microscopy and atomic force microscopy. Investigations of the crystal structure of a potential intermediate of this process, namely, acidic lanthanum phosphotungstate, [La(H2O)9](H3O)3[PW12O40]2(H2O)19, showed a tight network of hydrogen bonding, permitting closer packing of phosphotungstic acid anions, thereby confirming the mechanism of the observed self-assembly process. The new material demonstrated promising electrochemical properties in oxygen evolution reactions with the high stability of the obtained electrode material.

2.
Inorg Chem ; 63(19): 8556-8566, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684718

RESUMO

One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.


Assuntos
Nanopartículas Metálicas , Triptofano , Cério/química , Nanopartículas Metálicas/química , Modelos Moleculares , Oxirredução , Óxidos/química , Titânio/química , Triptofano/química , Triptofano/metabolismo
3.
Biomacromolecules ; 22(12): 4945-4955, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644050

RESUMO

Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.


Assuntos
Seda , Aranhas , Animais , Microscopia de Força Atômica , Seda/química , Solventes , Aranhas/metabolismo , Propriedades de Superfície
4.
Inorg Chem ; 60(19): 14820-14830, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515470

RESUMO

A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal-combustion method. The nature of an emerging intermetallic intermediate was revealed unexpectedly for the applied conditions via a single-crystal study of the isolated bimetallic isopropoxide nitrate complex [Ti2Y(iPrO)9(NO3)2], a nonoxo-substituted compound. Powders of the final reaction products were characterized by powder X-ray diffraction, scanning electron microscopy-energy-dispersive spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL). The addition of REEs stabilized the anatase phase up to ca. 700 °C before phase transformation into rutile became evident. The photocatalytic activity of titania modified with Eu3+ and Sm3+ was compared with that of Degussa P25 titania as the control. PL studies indicated the incorporation of Eu and Sm cations into titania (anatase) at lower annealing temperatures (500 °C), but an exclusion to the surface occurred when the annealing temperature was increased to 700 °C. The efficiency of the modified titania was inferior to the control titania while illuminated within narrow wavelength intervals (445-465 and 510-530 nm), but when subjected to a wide range of visible radiation, the Eu3+- and Sm3+-modified titania outperformed the control, which was attributed both to doping of the band structure of TiO2 with additional energy levels and to the surface chemistry of the REE-modified titania.

5.
Inorg Chem ; 60(6): 3593-3603, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33615790

RESUMO

Transition-metal oxide nanostructured materials are potentially attractive alternatives as anodes for Li ion batteries and as photocatalysts. Combining the structural and thermal stability of titanium oxides with the relatively high oxidation potential and charge capacity of molybdenum(VI) oxides was the motivation for a search for approaches to mixed oxides of these two metals. Challenges in traditional synthetic methods for such materials made development of a soft chemistry single-source precursor pathway our priority. A series of bimetallic Ti-Mo alkoxides were produced by reactions of homometallic species in a 1:1 ratio. Thermal solution reduction with subsequent reoxidation by dry air offered in minor yields Ti2Mo2O4(OMe)6(OiPr)6 (1) by the interaction of Ti(OiPr)4 with MoO(OMe)4 and Ti6Mo6O22(OiPr)16(iPrOH)2 (2) by the reaction of Ti(OiPr)4 with MoO(OiPr)4. An attempt to improve the yield of 2 by microhydrolysis, using the addition of stoichiometric amounts of water, resulted in the formation with high yield of a different complex, Mo7Ti7+xO31+x(OiPr)8+2x (3). Controlled thermal decomposition of 1-3 in air resulted in their transformation into the phase TiMoO5 (4) with an orthorhombic structure in space group Pnma, as determined by a Rietveld refinement. The electrochemical characteristics of 4 and its chemical transformation on Li insertion were investigated, showing its potential as a promising anode material for Li ion batteries for the first time. A lower charge capacity and lower stability were observed for its application as an anode for a Na ion battery.

6.
Nanomedicine ; 14(3): 735-744, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277639

RESUMO

Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe2O3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe2O3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe2O3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease.


Assuntos
Coagulação Sanguínea , Compostos Férricos/química , Imunidade Inata/efeitos dos fármacos , Sistema Calicreína-Cinina , Nanopartículas Metálicas/administração & dosagem , Humanos , Nanopartículas Metálicas/química , Fator de Crescimento Derivado de Plaquetas/metabolismo , Coroa de Proteína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Inorg Chem ; 56(22): 13938-13948, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29083880

RESUMO

Highly efficient tailored SiO2-based nanoadsorbents were synthesized for the selective extraction of rare-earth elements (REEs). Three different complexonates (EDTA, DTPA, and TTHA) were investigated in terms of uptake capacity and selectivity, showing capacities of up to 300 mg of RE3+/g and distinct preferential trends depending on the complexonate. EDTA-functionalized nanoadsorbents showed higher uptake for Dy3+, DTPA-functionalized ones for Nd3+, and TTHA-functionalized ones for La3+. The selectivity was even more pronounced in desorption at pH 3, with separation factors of up to 76 in ternary mixtures. A broad comparative study of single-crystal structures of the complexes between REE and the nongrafted complexonates at different pHs led to a molecular understanding of their individual modes of action. EDTA-derived nanoadsorbents combine concerted action and chelation, whereas the latter is the preferential coordination mechanism for DTPA- and TTHA-derived nanoadsorbents. These different mechanisms result in quite specific REE affinities, which opens great possibilities toward molecular recognition of REEs and for tailoring nanoadsorbents for a particular REE or group of REEs in their production from minerals and in recycling. It also brings new insights into how REEs are adsorbed on nanomaterials applied in a broad variety of fields, including bioimaging and MRI.

8.
Angew Chem Int Ed Engl ; 56(36): 10702-10706, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28544545

RESUMO

Lymphocytes, such as T cells and natural killer (NK) cells, have therapeutic promise in adoptive cell transfer (ACT) therapy, where the cells are activated and expanded in vitro and then infused into a patient. However, the in vitro preservation of labile lymphocytes during transfer, manipulation, and storage has been one of the bottlenecks in the development and commercialization of therapeutic lymphocytes. Herein, we suggest a cell-in-shell (or artificial spore) strategy to enhance the cell viability in the practical settings, while maintaining biological activities for therapeutic efficacy. A durable titanium oxide (TiO2 ) shell is formed on individual Jurkat T cells, and the CD3 and other antigens on cell surfaces remain accessible to the antibodies. Interleukin-2 (IL-2) secretion is also not hampered by the shell formation. This work suggests a chemical toolbox for effectively preserving lymphocytes in vitro and developing the lymphocyte-based cancer immunotherapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia , Neoplasias/terapia , Linfócitos T/efeitos dos fármacos , Titânio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Titânio/química
9.
Bull Environ Contam Toxicol ; 97(2): 153-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27107586

RESUMO

Nano-sized palladium (nano-Pd) is used in catalytic converters of automobiles, where it can be released into the environment by abrasion. Although these particles may subsequently be transported into surface water bodies, no data estimating their fate and toxicity in aquatic systems exists. This study characterized the particle size development of nano-Pd (advertised size ~12 nm; hydrodynamic size ~70 nm) in media with variable ionic strength (IS). Additionally, the particles' acute toxicity for daphnids and chironomids was assessed. While nano-Pd agglomerated more quickly with increasing IS, it caused only marginal effects in both test species after 96 h of exposure. After 144 h of exposure, however, an EC50 value of 1.23 mg nano-Pd/L for daphnids was determined indicating effects over the long run. When considering the relatively low environmental concentration of elemental Pd in surface waters (usually ng/L), though, this study suggests only a low aquatic risk in response to nano-Pd.


Assuntos
Ecossistema , Monitoramento Ambiental , Nanopartículas Metálicas/toxicidade , Paládio/toxicidade , Tamanho da Partícula , Risco , Medição de Risco
10.
Chemistry ; 20(34): 10732-6, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25042144

RESUMO

Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution.


Assuntos
Nanoestruturas/química , Elementos de Transição/química , Adsorção , Cromo/química , Cromo/isolamento & purificação , Nióbio/química , Óxidos/química , Porosidade , Titânio/química , Poluentes Químicos da Água/química , Zircônio/química
11.
Inorg Chem ; 53(2): 943-51, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24392745

RESUMO

Interaction of lanthanum isopropoxide with molybdenum(VI) alkoxides in La/Mo ratios varying from 3:1 to 1:1 in acetophenon or allyl alcohol as solvents offers nanosized poorly crystalline products of complex composition, where the precipitation of Mo-rich ones is followed by the formation of La-rich ones with conservation of the reaction stoichiometry in total. Thermal treatment of the precipitates at temperatures over 700 °C leads to the formation of stoichiometric phases of the α- and ß-La2Mo2O9 compositions. Introduction of smaller Re(3+) cations such as Sm(3+) by doping favors stabilization of the La2-xRExMo2O9 phase with improved crystallinity even after lower-temperature thermal treatment. The doping is successful only when the Re(3+) (Sm(3+), Eu(3+), and Tb(3+)) is introduced as an alkoxide: application of Re(3+)(acac)3 as Re(3+) sources leads to materials free from Re(3+). The produced samples were characterized by XPD, TGA, SEM, and TEM studies as well as the luminescent properties for the Sm(3+)-doped phases.

12.
ACS ES T Water ; 4(2): 751-760, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38356929

RESUMO

Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC). The biocatalysts demonstrated high oxidation rates for the selected pollutants. In particular HRP immobilized fly ash and perlite degraded DFC and PC completely during 3 days of interaction and also showed high degradation rates for CBZ. Immobilized laccase was successful in PC degradation, where up to 70-80% degradation of the compounds with aromatic rings was reported by NMR measurements for a high drug concentration of 10 µg/mL. The immobilization method played a significant role in this process by providing stability and protection for the enzymes over 3 weeks. Furthermore, the enzymes acted differently in the three chosen supports due to their complex chemical composition, which could have an effect on the overall enzyme activity.

13.
Nanoscale Adv ; 6(12): 3146-3157, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38868832

RESUMO

Spherical particles with tunable anisotropic structures enabled by multiple surface functionalities have garnered interest for their potential applications in adsorption technologies. The presence of diverse functional groups in the surface layer, exhibiting varying acidity and hydrophilicity, can lead to unique characteristics in terms of surface structure and behaviour. In this study, the particles were synthesised using a two-step approach involving surface functionalisation of previously synthesised SiO2 Stöber particles. This was achieved by employing 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) in a toluene-in-water emulsion. The resulting particles were found to be nonporous, with a specific surface area of 8 m2 g-1. Their sizes were determined to be up to 350 nm through photon cross-correlation spectroscopy. Moreover, the particles exhibited a high net content of functional groups (both amino and mercapto) of 2 mmol g-1. The organisation of the particles during synthesis was observed through SEM images, providing insights into their structural characteristics. Additionally, the study of Eu(iii), Au(iii), and Ag(i) ions and fluorescein adsorption demonstrated varying interactions on the surface, highlighting the potential applications and versatility of these functionalised particles.

14.
Chem Commun (Camb) ; 60(40): 5330-5333, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666704

RESUMO

Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.


Assuntos
Lactobacillus acidophilus , Luteolina , Óleos , Probióticos , Água , Lactobacillus acidophilus/metabolismo , Probióticos/química , Água/química , Luteolina/química , Óleos/química , alfa-Amilases/metabolismo
15.
Chemistry ; 19(51): 17439-44, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24243542

RESUMO

Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m(2) g(-1) with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non-porous rutile monolith, as commonly observed with nanoscale titania.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos/química , Titânio/química , Eletrodos , Európio/química , Corantes Fluorescentes/química , Íons/química , Porosidade , Temperatura
16.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38133052

RESUMO

The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 µg mL-1 in zebrafish.

17.
ACS Nano ; 17(17): 17451-17467, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643371

RESUMO

Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.


Assuntos
Inflamassomos , Nanopartículas , Humanos , Leucócitos Mononucleares , Espectrometria de Massa de Íon Secundário , Inflamação , Dióxido de Silício/farmacologia
18.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335787

RESUMO

Novel silica-based adsorbents were synthesized by grafting the surface of SiO2 nanoparticles with amine and sulfur containing functional groups. Produced nanomaterials were characterized by SEM-EDS, AFM, FTIR, TGA and tested for adsorption and separation of Rare Earth Elements (REE) (Nd3+ and Sm3+) and Late Transition Metals (LTM) (Ni2+ and Co2+) in single and mixed solutions. The adsorption equilibrium data analyzed and fitted well to Langmuir isotherm model revealing monolayer adsorption process on homogeneously functionalized silica nanoparticles (NPs). All organo-silicas showed high adsorption capacities ranging between 0.5 and 1.8 mmol/g, depending on the function and the target metal ion. Most of these ligands demonstrated higher affinity towards LTM, related to the nature of the functional groups and their arrangement on the surface of nanoadsorbent.

19.
Dalton Trans ; 51(24): 9511-9521, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35695069

RESUMO

In the pursuit of understanding the factors guiding interactions between polyoxometalates (POMs) and biomolecules, several complexes between Keggin phosphomolybdate and diglycine have been produced at different acidity and salinity conditions, leading to difference in stoichiometry and in crystal structure. Principal factors determining how the POM and dipeptide interact appear to be pH, ionic strength of the medium, and the molar ratio of POM to peptide. An important effect turned out to be even the structure-directing role of the sodium cations coordinating carbonyl functions of the peptide bond. Given the interest in applying POMs in biological systems, these factors are highly relevant to consider. In the view of recent interest in using POMs as nano catalysts in peptide hydrolysis also the potential Keggin POM transformation in phosphate buffered saline medium was investigated leading to insight that nanoparticles of zirconium phosphate (ZrP) can be actual catalysts for breakdown of the peptide bond.


Assuntos
Compostos de Tungstênio , Ânions , Hidrólise , Peptídeos/química , Polieletrólitos , Compostos de Tungstênio/química
20.
ACS Omega ; 7(27): 23576-23590, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847252

RESUMO

Low-cost mesoporous silicas of the SBA-15 family were prepared, aimed for removal of a broad spectrum of both cationic and anionic forms of hazardous metal pollutants (Cr(III, VI), Mn(II, VII), Pb(II), Cd(II), and Cu(II)) from environmental water. Series of mono- and bifunctional materials with immobilized ethylenediaminetriacetic acid (EDTA), primary amine (NH2), and quaternary ammonium (QAS) groups were prepared in a cost-efficient one-step synthesis using two silica sources, low-cost sodium metasilicate (Na2SiO3 9H2O) and the conventional source-tetraethylorthosilicate (TEOS). The functionalized SBA-15 samples obtained from both silica sources were highly ordered, as evidenced by TEM and SAXS data. All obtained materials were mesoporous with high surface area values of up to 745 m2/g, pore volumes from 0.99 to 1.44 cm3/g, and narrow pore distributions near 7 nm. The adsorption affinity of the EDTA-functionalized samples followed the common order Pb(II)> Cd(II)> Cu(II)> Cr(III)> Mn(II), which could be explained based on the Pearson theory. The highest adsorption capacities were observed for samples functionalized by EDTA groups using TEOS for synthesis (TEOS/EDTA): 195.6 mg/g for Pb(II), 111.2 mg/g for Cd(II), 58.7 mg/g for Cu(II), 57.7 mg/g for Cr(III), and 49.4 mg/g for Mn(II). Moreover, organic matter (humic acid up to 10 mg/L) and inorganic (Na(I), K(I), Mg(II), Ca(II), etc) macrocomponents present in environmental water had almost negligible effect on the removal of these cations. The NaSi/EDTA/NH2 sample revealed a better selectivity compared to the NaSi/NH2 sample towards such species as Cr(III), Mn(II), Cd(II), and Cu(II). The chromate-ions uptake at pH 7.5 by the TEOS/QAS sample turned practically unaffected by the presence of doubly charged anions (CO3 2-, SO4 2-). The content of functional groups on the surface of MS decreased only slightly (∼1-5%) after several regeneration cycles. The complete desorption of all heavy metal ions can be achieved using 1 mol/L EDTA solution. Reusability tests demonstrated the complete stability of the adsorbent for at least five to six consecutive adsorption/desorption cycles with no decrease in its adsorption characteristics compared to those obtained by 0.05 mol/L HNO3 treatments. The synthesized mesoporous materials were evaluated for removal of the heavy metal ions from drinking and different natural water samples, proving their potential as sustainable, effective, and cost-efficient adsorbents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa