Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2307497, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088587

RESUMO

The availability of durable, high-performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion-exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave-assisted synthesis method is used to develop a core-shell catalyst support based on a hydrogenated TiO2 /carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2 provides a strong metal-support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as-synthesized PtRu/TiO2 /C-400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80-0.90 V) and voltage efficiency (68%@ 0.5 A cm-2 ) values in the compared literature. In addition, the cell demonstrates promising short-term voltage stability with a minor voltage decay of 1.5 mV h-1 . This "first-of-its-kind in alkaline" work may open further research avenues to develop rapid synthesis methods to prepare advanced core-shell metal-oxide/carbon supports for electrocatalysts for use in the next-generation of AEMFCs with potential applicability to the broader electrochemical systems research community.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa