Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 33(2): 27, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28044276

RESUMO

Microbial-derived natural products from extreme niches such as deepsea are known to possess structural and functional novelty. With this background, the present study was designed to investigate the bioprospecting potential and systematics of a deep-sea derived piezotolerant bacterial strain NIOT-Ch-40, showing affiliation to the genus Streptomyces based on 16S RNA gene similarity. Preliminary screening for the presence of biosynthetic genes like polyketide synthase I, polyketide synthase II, non ribosomal peptide synthase, 3-amino-5-hydroxybenzoic acid synthase and spiroindimicin followed by antibacterial activity testing confirmed the presence of potent bioactivity. The secondary metabolites produced during fermentation in Streptomyces broth at 28 °C for 7 days were extracted with ethyl acetate. The extract exhibited a specific inhibitory activity against Gram-positive bacteria and was significantly effective (p < 0.0001) against methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA was 1.5 µg/mL, which was statistically significant in comparison with erythromycin. A multifaceted analysis of the Streptomyces spp. was carried out to delineate the strain NIOT-Ch-40 at a higher resolution which includes morphological, biochemical and molecular studies. Piezotolerance studies and comparison of fatty acid profiles at high pressures revealed that it could be considered as one of the taxonomic markers, especially for the strains isolated from the deep sea environments. In conclusion, the observation of comparative studies with reference strains indicated towards the strain NIOT-Ch-40 as an indigenous marine piezotolerant Streptomyces sp. with a higher probability of obtaining novel bioactive metabolites.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Streptomyces/isolamento & purificação , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Fermentação , Bactérias Gram-Positivas/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Metabolismo Secundário , Análise de Sequência de RNA/métodos , Streptomyces/química , Streptomyces/classificação , Streptomyces/genética
2.
Biomedicine (Taipei) ; 14(2): 29-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939098

RESUMO

The overexpression of glutaminase is reported to influence cancer growth and metastasis through glutaminolysis. Upregulation of glutamine catabolism is recently recognized as a critical feature of cancer, and cancer cells are observed to reprogram glutamine metabolism to maintain its survival and proliferation. Special focus is given on the glutaminase isoform, GLS1 (kidney type glutaminase), as the other isoform GLS2 (Liver type glutaminase) acts as a tumour suppressor in some conditions. Glutaminolysis linked with autophagy, which is mediated via mTORC1, also serves as a promising target for cancer therapy. Glutamine also plays a vital role in maintaining redox homeostasis. Inhibition of glutaminase aggravates oxidative stress by reducing glutathione level, thus leading to apoptotic-mediated cell death in cancer cells Therefore, inhibiting the glutaminase activity using glutaminase inhibitors such as BPTES, DON, JHU-083, CB-839, compound 968, etc. may answer many intriguing questions behind the uncontrolled proliferation of cancer cells and serve as a prophylactic treatment for cancer. Earlier reports neither discuss nor provide perspectives on exact signaling gene or pathway. Hence, the present review highlights the plausible role of glutaminase in cancer and the current therapeutic approaches and clinical trials to target and inhibit glutaminase enzymes for better cancer treatment.

3.
Immun Inflamm Dis ; 12(10): e70041, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39436197

RESUMO

BACKGROUND: Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE: To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS: The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS: Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION: Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Neoplasias , Compostos Fitoquímicos , Transdução de Sinais , Autofagia/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos
5.
J Biomol Struct Dyn ; 41(5): 1690-1703, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994284

RESUMO

Histone deacetylase (HDAC) inhibitors, are new class of cancer chemotherapeutics used in clinical development. It plays a pivotal role in restoring the acetylation balance and lysine residual deacetylation in histone and non-histone proteins. Notably, HDAC inhibitors have been approved by FDA to treat different malignancies. Recently, we demonstrated berberine as pan inhibitor for HDAC. However, isoform specific inhibition of HDAC enzyme is highly warranted. Therefore, a pharmacophore based structural exploration of berberine is in need to be developed, berberine is composed of four portions namely: a) zinc binding group (ZBG), b) Linker (scaffold), c) connect unit (CU), and d) surface recognition moiety (SRM). We derived four berberine derivatives based on common HDAC inhibition pharmacophore, compound 4 possesses highest bit score by molecular docking and compound stability by HOMOs-LUMOs analysis. It is concluded that, structurally modified berberine derivatives shown better inhibition of HDAC enzymes offering improved clinical efficacy.


Assuntos
Berberina , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/química , Berberina/farmacologia , Simulação de Acoplamento Molecular , Farmacóforo , Histonas/metabolismo , Histona Desacetilases/química
6.
Nutrients ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432506

RESUMO

Among the world's leading causes of cardiovascular disease, atherosclerosis is a chronic inflammatory disorder that affects the arteries. Both vasodilation and vasoconstriction, low levels of nitric oxide and high levels of reactive oxygen species and pro-inflammatory factors characterize dysfunctional blood vessels. Hypertension, and atherosclerosis, all start with this dysfunction. Geraniol, a compound of acyclic monoterpene alcohol, found in plants such as geranium, lemongrass and rose, is a primary constituent of essential oils. It shows a variety of pharmacological properties. This study aimed to investigate the impact of geraniol on Ox-LDL-induced stress and inflammation in human umbilical vein endothelial cells. In this study, HUVECs were treated with Ox-LDL or geraniol at different dose concentrations. MTT assay, Western blot, ROS generation and DNA fragmentation were used to evaluate geraniol's effects on Ox-LDL-induced HUVECs inflammation. The results show that geraniol pre-incubation ameliorates Ox-LDL-mediated HUVECs cytotoxicity and DNA fragmentation. The geraniol inhibited the production of pro-inflammatory cytokines by Ox-LDL, including TNF-α, IL-6 and IL-1ß. In Ox-LDL-stimulated HUVECs, geraniol suppresses the nuclear translocation and activity of NF-ᴋB as well as phosphorylation of IkBα. Moreover, geraniol activated the PI3K/AKT/NRF2 pathway in HUVECs, resulting in an increase in the expression of HO-1. Taking our data together, we can conclude that, in HUVECs, geraniol inhibits Ox-LDL-induced inflammation and oxidative stress by targeting PI3/AKT/NRF2.


Assuntos
Aterosclerose , Cymbopogon , Humanos , Heme Oxigenase-1/metabolismo , Cymbopogon/metabolismo , Monoterpenos Acíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Transdução de Sinais , Anti-Inflamatórios/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Aterosclerose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-33357194

RESUMO

Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a "double-edged sword" by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa