Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cytokine ; 171: 156376, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748333

RESUMO

Cancer involves cells' abnormal growth and ability to invade or metastasize to different body parts. Cancerous cells can divide uncontrollably and spread to other areas through the lymphatic or circulatory systems. Tumors form when malignant cells clump together in an uncontrolled manner. In this context, the cytokine interferon-gamma (IFN-γ) is crucial in regulating immunological responses, particularly malignancy. While IFN-γ is well-known for its potent anti-tumor effects by activating type 1 immunity, recent research has revealed its ability to suppress type 2 immunity, associated with allergy and inflammatory responses. This review aims to elucidate the intricate function of IFN-γ in inhibiting type 2 immune responses to cancer. We explore how IFN-γ influences the development and function of immune cells involved in type 2 immunity, such as mast cells, eosinophils, and T-helper 2 (Th2) cells. Additionally, we investigate the impact of IFN-mediated reduction of type 2 immunity on tumor development, metastasis, and the response to immunotherapeutic interventions. To develop successful cancer immunotherapies, it is crucial to comprehend the complex interplay between type 2 and type 1 immune response and the regulatory role of IFN-γ. This understanding holds tremendous promise for the development of innovative treatment approaches that harness the abilities of both immune response types to combat cancer. However, unraveling the intricate interplay between IFN-γ and type 2 immunity in the tumor microenvironment will be essential for achieving this goal.

2.
Environ Chem Lett ; : 1-41, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37362012

RESUMO

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 µg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

3.
J Biochem Mol Toxicol ; 36(6): e23030, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35253303

RESUMO

Aging is accompanied by major changes in body composition that can negatively affect functional status in older adults, including a progressive decrease in muscle mass, strength, and quality. The prevalence of sarcopenia has varied considerably, depending on the definition used and the population surveyed-a 2014 meta-analysis across several countries found estimates ranging from 1% to 29% for people aged 60 years or older, who live independently. The potentially relevant studies were retrieved from the ScienceDirect/Medline/PubMed/Public library of science/Mendeley/Springer link and Google Scholar. Multiple keywords were used for the literature search both alone and in combination. Some of the important keywords used for literature search were as follows: "Epidemiology of muscle weakness/muscle disorders," "Pathogenesis of RAAS in muscle weakness," "Role of Angiotensin 1-7/ACE-2/Mas R axis in muscle weakness," and "Correction pathophysiology of muscle weakness via ACE2." The renin-angiotensin system (RAAS), a major blood pressure regulatory system, is a candidate mediator that may promote aging-associated muscle weakness. Previously, studies explored the proof concept for RAAS inhibition as a therapeutic target. Furthermore, in RAAS, angiotensin II, and angiotensin-converting enzyme 2 (ACE2) have been reported to induce endoplasmic reticulum (ER) stress via glucose-regulated protein 78/eukaryotic translation initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4)/CHOP axis in the liver. In addition, other mitochondria and ER physical interactions contribute to skeletal muscle dysfunction. However, very few studies have investigated the relationship between RAAS and ER stress-associated pathophysiological events and ACE2-mediated biological consequences in muscle weakness. Thus, the study has been designed to investigate the RAAS-independent beneficial role of ACE2 in muscle weakness.


Assuntos
Enzima de Conversão de Angiotensina 2 , Sistema Renina-Angiotensina , Idoso , Angiotensina II , Humanos , Debilidade Muscular , Peptidil Dipeptidase A/metabolismo
4.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566187

RESUMO

Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski's drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer's animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Doença de Alzheimer/tratamento farmacológico , Animais , Benzopiranos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Parkinson/tratamento farmacológico
5.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458770

RESUMO

Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against a variety of illnesses. The current research evaluates the neuropharmacological effects of silibinin and naringenin in a zebrafish model against neurotoxicity and oxidative stress caused by Bisphenol A. In this study, a novel tank diving test (NTDT) and light−dark preference test (LDPT) were used in neurobehavioural investigations. The experimental protocol was planned to last 21 days. The neuroprotective effects of silibinin (10 µM) and naringenin (10 µM) in zebrafish (Danio rerio) induced by BPA (17.52 µM) were investigated. In the brine shrimp lethality assay, the 50% fatal concentrations (LC50) were 34.10 µg/mL (silibinin) and 91.33 µg/mL (naringenin) compared to the standard potassium dichromate (13.15 µg/mL). The acute toxicity investigation found no mortality or visible abnormalities in the silibinin- and naringenin-treated groups (LC50 > 100 mg/L). The altered scototaxis behaviour in LDPT caused by BPA was reversed by co-supplementation with silibinin and naringenin, as shown by decreases in the number of transitions to the light zone and the duration spent in the light zone. Our findings point to BPA's neurotoxic potential in causing altered scototaxis and bottom-dwelling behaviour in zebrafish, as well as the usage of silibinin and naringenin as potential neuroprotectants.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Compostos Benzidrílicos/toxicidade , Desenho de Fármacos , Flavanonas , Flavonoides , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Fenóis , Silibina/farmacologia , Peixe-Zebra
6.
Molecules ; 27(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011497

RESUMO

Genistein is a naturally occurring polyphenolic molecule in the isoflavones group which is well known for its neuroprotection. In this review, we summarize the efficacy of genistein in attenuating the effects of memory impairment (MI) in animals. Scopus, PubMed, and Web of Science databases were used to find the relevant articles and discuss the effects of genistein in the brain, including its pharmacokinetics, bioavailability, behavioral effects, and some of the potential mechanisms of action on memory in several animal models. The results of the preclinical studies highly suggested that genistein is highly effective in enhancing the cognitive performance of the MI animal models, specifically in the memory domain, including spatial, recognition, retention, and reference memories, through its ability to reduce oxidative stress and attenuate neuroinflammation. This review also highlighted challenges and opportunities to improve the drug delivery of genistein for treating MI. Along with that, the possible structural modifications and derivatives of genistein to improve its physicochemical and drug-likeness properties are also discussed. The outcomes of the review proved that genistein can enhance the cognitive performance and ameliorate MI in different preclinical studies, thus indicating its potential as a natural lead for the design and development of a novel neuroprotective drug.


Assuntos
Encéfalo/metabolismo , Genisteína/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Desenho de Fármacos , Humanos , Transtornos da Memória/metabolismo , Doenças Neuroinflamatórias/metabolismo
7.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163934

RESUMO

Cardiovascular disorders (CVDs) are the leading risk factor for death worldwide, and research into the processes and treatment regimens has received a lot of attention. Tilianin is a flavonoid glycoside that can be found in a wide range of medicinal plants and is most commonly obtained from Dracocephalum moldavica. Due to its extensive range of biological actions, it has become a well-known molecule in recent years. In particular, numerous studies have shown that tilianin has cardioprotective properties against CVDs. Hence, this review summarises tilianin's preclinical research in CVDs, as well as its mechanism of action and opportunities in future drug development. The physicochemical and drug-likeness properties, as well as the toxicity profile, were also highlighted. Tilianin can be a natural lead molecule in the therapy of CVDs such as coronary heart disease, angina pectoris, hypertension, and myocardial ischemia, according to scientific evidence. Free radical scavenging, inflammation control, mitochondrial function regulation, and related signalling pathways are all thought to play a role in tilianin's cardioprotective actions. Finally, we discuss tilianin-derived compounds, as well as the limitations and opportunities of using tilianin as a lead molecule in drug development for CVDs. Overall, the scientific evidence presented in this review supports that tilianin and its derivatives could be used as a lead molecule in CVD drug development initiatives.


Assuntos
Produtos Biológicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Desenvolvimento de Medicamentos , Flavonoides/farmacologia , Glicosídeos/farmacologia , Animais , Humanos
8.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163999

RESUMO

Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Diterpenos/farmacologia , Desenho de Fármacos , Desenvolvimento de Medicamentos , Inflamação/tratamento farmacológico , Animais , Citocinas/metabolismo , Humanos
9.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335393

RESUMO

Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.


Assuntos
Anemarrhena , Espirostanos , Anemarrhena/química , Desenho de Fármacos , Espirostanos/química , Espirostanos/farmacologia
10.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956923

RESUMO

Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.


Assuntos
Bacopa , Infecções Urinárias , Antibacterianos/farmacologia , Bacopa/química , Etanol , Klebsiella pneumoniae , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteus mirabilis , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
11.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014304

RESUMO

Viniferin is a resveratrol derivative. Resveratrol is the most prominent stilbenoid synthesized by plants as a defense mechanism in response to microbial attack, toxins, infections or UV radiation. Different forms of viniferin exist, including alpha-viniferin (α-viniferin), beta-viniferin (ß-viniferin), delta-viniferin (δ-viniferin), epsilon-viniferin (ε-viniferin), gamma-viniferin (γ-viniferin), R-viniferin (vitisin A), and R2-viniferin (vitisin B). All of these forms exhibit a range of important biological activities and, therefore, have several possible applications in clinical research and future drug development. In this review, we present a comprehensive literature search on the chemistry and biosynthesis of and the diverse studies conducted on viniferin, especially with regards to its anti-inflammatory, antipsoriasis, antidiabetic, antiplasmodic, anticancer, anti-angiogenic, antioxidant, anti-melanogenic, neurodegenerative effects, antiviral, antimicrobial, antifungal, antidiarrhea, anti-obesity and anthelminthic activities. In addition to highlighting its important chemical and biological activities, coherent and environmentally acceptable methods for establishing vinferin on a large scale are highlighted to allow the development of further research that can help to exploit its properties and develop new phyto-pharmaceuticals. Overall, viniferin and its derivatives have the potential to be the most effective nutritional supplement and supplementary medication, especially as a therapeutic approach. More researchers will be aware of viniferin as a pharmaceutical drug as a consequence of this review, and they will be encouraged to investigate viniferin and its derivatives as pharmaceutical drugs to prevent future health catastrophes caused by a variety of serious illnesses.


Assuntos
Estilbenos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais , Descoberta de Drogas , Preparações Farmacêuticas , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico
12.
Pathol Res Pract ; 259: 155346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781762

RESUMO

Osteosarcoma (OS) is a bone cancer which stems from several sources and presents with diverse clinical features, making evaluation and treatment difficult. Chemotherapy tolerance and restricted treatment regimens hinder progress in survival rates, requiring new and creative therapeutic strategies. The Wnt/ß-catenin system has been recognised as an essential driver of OS development, providing potential avenues for therapy. Non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), are essential in modulating the Wnt/ß-catenin cascade in OS. MiRNAs control the system by targeting vital elements, while lncRNAs and circRNAs interact with system genes, impacting OS growth and advancement. This paper thoroughly analyses the intricate interplay between ncRNAs and the Wnt/ß-catenin cascade in OS. We examine how uncontrolled levels of miRNAs, lncRNAs, and circRNAs lead to an abnormal Wnt/ß-catenin network, which elevates the development, spread, and susceptibility to the treatment of OS. We emphasise the potential of ncRNAs as diagnostic indicators and avenues for treatment in OS care. The review offers valuable insights for academics and clinicians studying OS aetiology and creating new treatment techniques for the ncRNA-Wnt/ß-catenin cascade. Utilising the oversight roles of ncRNAs in the Wnt/ß-catenin system shows potential for enhancing the outcomes of patients and progressing precision medicine in OS therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Osteossarcoma , RNA não Traduzido , Via de Sinalização Wnt , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/tratamento farmacológico , Via de Sinalização Wnt/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Future Sci OA ; 10(1): FSO963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817384

RESUMO

Painless legs and moving toe syndrome (PoLMT) is a rare syndrome characterized by involuntary movements of the toe without pain. The exact etiology of the patient's PoLMT is unknown. We present a case of PoLMT in 45-year-old woman with a history of haloperidol intake for 10 months. Haloperidol was discontinued, and aripiprazole (15 mg) was initiated. After this switch, a reduction in movement was observed in the third and fourth toes; however, the second toe showed no discernible change.


Painless Legs and Moving Toe Syndrome (PoLMT) is a rare condition in which the toe moves on its own without any pain. No one knows for sure what causes PoLMT in patients. In this case report, we discuss a 45-year-old woman with PoLMT who was taking a drug called haloperidol for 10 months prior to their visit to hospital. Another drug, aripiprazole, was started after haloperidol was stopped. It was noticed that the third and fourth toes moved less after this switch in medication, but no change was noticed in the second toe.

14.
Pathol Res Pract ; 253: 155037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160482

RESUMO

Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , MicroRNAs/genética , RNA não Traduzido/genética , Inflamação , Biomarcadores/metabolismo
15.
ACS Omega ; 9(5): 5100-5126, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343989

RESUMO

Mercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review. It first delineates the types (covering elemental mercury, inorganic mercury compounds, organic mercury compounds), structures, and sources of mercury. It then discusses the pharmacokinetic profile of mercury, molecular mechanisms of mercury toxicity, and clinical manifestation of acute and chronic mercury toxicity to public health. It also elucidates the mercury toxicity to the environment and human health in detail, covering ecotoxicity, neurotoxicity diseases, neurological diseases, genotoxicity and gene regulation, immunogenicity, pregnancy and reproductive system damage, cancer promotion, cardiotoxicity, pulmonary diseases, and renal disease. In order to mitigate the adverse effects of mercury, strategies to overcome mercury toxicity are recommended. Finally, some future perspectives are provided in order to advance this field of research in the future.

16.
Pathol Res Pract ; 254: 155134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277746

RESUMO

Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/ß-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/ß-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/ß-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/ß-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/ß-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/ß-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/ß-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , RNA Longo não Codificante/genética , RNA Circular/genética , Neoplasias da Próstata/patologia , MicroRNAs/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38494932

RESUMO

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.

19.
J Educ Health Promot ; 12: 229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727408

RESUMO

BACKGROUND: Higher education institutions are adapting and innovating like never before to provide highly individualized learning environments for both traditional and non-traditional students. This seismic upheaval in the higher education landscape is being observed across the world. The present study aimed to evaluate the effectiveness of a blended learning approach on nursing students' self-directed learning readiness. MATERIALS AND METHODS: This study is a quasi-experimental approach in which a non-equivalent control group was used in a post-test design. A comparison was carried out with two separate semester cohort students representing the control and intervention groups which had 24 and 30 students, respectively. This study included first-year nursing students that enrolled in a course called "Anatomy and Physiology" course of nursing education at a private university. The control group received all their teaching face-to-face, and the intervention group used information technology and prescribed activities in their online e-book. The self-directed learning readiness (SDLR) tool measures the learners' readiness in self-directed learning in both groups. This scale comprises three subscales which are "self-management," "desire for learning," and "self-control." An independent-samples t-test was conducted to compare self-directed learning readiness in the control and intervention groups. Data were analyzed using IBM SPSS Statistics 25 software to measure the independent t-test. RESULTS: The self-directed readiness scores were significantly higher in the intervention group with P = 0.019. The intervention group showed a higher mean value on the subscales of self-management and self-control, which demonstrated a significant difference with P values of 0.018 and 0.028, respectively. The subscale desire for learning was insignificant with a P value of 0.166. CONCLUSION: This study concluded that the overall results demonstrate that incorporating blended learning using e-books for anatomy and physiology courses in nursing education can contribute to students' readiness for self-directed learning. Specifically, the blended learning teaching and learning strategy had a positive impact on nursing students' capacity for self-management and self-control.

20.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631280

RESUMO

Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa