Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Small ; : e2404963, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282818

RESUMO

Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.

2.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198821

RESUMO

Photo-polymerized hydrogels are ideally suited for stem-cell based tissue regeneration and three dimensional (3D) bioprinting because they can be highly biocompatible, injectable, easy to use, and their mechanical and physical properties can be controlled. However, photo-polymerization involves the use of potentially toxic photo-initiators, exposure to ultraviolet light radiation, formation of free radicals that trigger the cross-linking reaction, and other events whose effects on cells are not yet fully understood. The purpose of this study was to examine the effects of hydrogen sulfide (H2S) in mitigating cellular toxicity of photo-polymerization caused to resident cells during the process of hydrogel formation. H2S, which is the latest discovered member of the gasotransmitter family of gaseous signalling molecules, has a number of established beneficial properties, including cell protection from oxidative damage both directly (by acting as a scavenger molecule) and indirectly (by inducing the expression of anti-oxidant proteins in the cell). Cells were exposed to slow release H2S treatment using pre-conditioning with glutathione-conjugated-garlic extract in order to mitigate toxicity during the photo-polymerization process of hydrogel formation. The protective effects of the H2S treatment were evaluated in both an enzymatic model and a 3D cell culture system using cell viability as a quantitative indicator. The protective effect of H2S treatment of cells is a promising approach to enhance cell survival in tissue engineering applications requiring photo-polymerized hydrogel scaffolds.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/farmacologia , Sulfeto de Hidrogênio/farmacologia , Engenharia Tecidual , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Polimerização/efeitos dos fármacos , Polimerização/efeitos da radiação , Impressão Tridimensional , Alicerces Teciduais , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação
3.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
4.
Biotechnol Bioeng ; 117(11): 3265-3276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667700

RESUMO

Natural oxygen gradients occur in tissues of biological organisms and also in the context of three-dimensional (3D) in vitro cultivation. Oxygen diffusion limitation and metabolic oxygen consumption by embedded cells produce areas of hypoxia in the tissue/matrix. However, reliable systems to detect oxygen gradients and cellular response to hypoxia in 3D cell culture systems are still missing. In this study, we developed a system for visualization of oxygen gradients in 3D using human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) modified to stably express a fluorescent genetically engineered hypoxia sensor HRE-dUnaG. Modified cells retained their stem cell characteristics in terms of proliferation and differentiation capacity. The hypoxia-reporter cells were evaluated by fluorescence microscopy and flow cytometry under variable oxygen levels (2.5%, 5%, and 7.5% O2 ). We demonstrated that reporter hAD-MSCs output is sensitive to different oxygen levels and displays fast decay kinetics after reoxygenation. Additionally, the reporter cells were encapsulated in bulk hydrogels with a variable cell number, to investigate the sensor response in model 3D cell culture applications. The use of hypoxia-reporting cells based on MSCs represents a valuable tool for approaching the genuine in vivo cellular microenvironment and will allow a better understanding of the regenerative potential of AD-MSCs.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos , Hipóxia Celular/fisiologia , Células-Tronco Mesenquimais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia
5.
Mar Drugs ; 16(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150548

RESUMO

A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading to high yields of Released EPS (REPS) and PUFA, useful for nutraceutical products and biomaterials. REPS were extracted and characterized by chemical staining, Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC), Fourier Transform Infrared Spectroscopy (FT-IR) and other spectroscopic techniques. Due to their gelation property, REPS were used to produce a photo-polymerizable hybrid hydrogel (REPS-Hy) with addition of polyethylene glycol diacrylated (PEGDa). REPS-Hy was stable over time and resistant to dehydration and spontaneous hydrolysis. The rheological and functional properties of REPS-Hy were studied. The enzyme carrier ability of REPS-Hy was assessed using the detoxification enzyme thiosulfate:cyanide sulfur transferase (TST), suggesting the possibility to use REPS-Hy as an enzymatic hydrogel system. Finally, REPS-Hy was used as a scaffold for culturing human mesenchymal stem cells (hMSCs). The cell seeding onto the REPS-Hy and the cell embedding into 3D-REPS-Hy demonstrated a scaffolding property of REPS-Hy with non-cytotoxic effect, suggesting potential applications of cyanobacteria REPS for producing enzyme- and cell-carrier systems.


Assuntos
Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Cianobactérias/metabolismo , Suplementos Nutricionais , Portadores de Fármacos/química , Biomassa , Linhagem Celular , Ácidos Graxos Insaturados/biossíntese , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais , Fotobiorreatores/microbiologia , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química
6.
Proc Natl Acad Sci U S A ; 112(16): 5147-52, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25825771

RESUMO

Therapies that promote angiogenesis have been successfully applied using various combinations of proangiogenic factors together with a biodegradable delivery vehicle. In this study we used bimodal noninvasive monitoring to show that the host response to a proangiogenic biomaterial can be drastically affected by the mode of implantation and the surface area-to-volume ratio of the implant material. Fluorescence/MRI probes were covalently conjugated to VEGF-bearing biodegradable PEG-fibrinogen hydrogel implants and used to document the in vivo degradation and liberation of bioactive constituents in an s.c. rat implantation model. The hydrogel biodegradation and angiogenic host response with three types of VEGF-bearing implant configurations were compared: preformed cylindrical plugs, preformed injectable microbeads, and hydrogel precursor, injected and polymerized in situ. Although all three were made with identical amounts of precursor constituents, the MRI data revealed that in situ polymerized hydrogels were fully degraded within 2 wk; microbead degradation was more moderate, and plugs degraded significantly more slowly than the other configurations. The presence of hydrogel degradation products containing the fluorescent label in the surrounding tissues revealed a distinct biphasic release profile for each type of implant configuration. The purported in vivo VEGF release profile from the microbeads resulted in highly vascularized s.c. tissue containing up to 16-fold more capillaries in comparison with controls. These findings demonstrate that the configuration of an implant can play an important role not only in the degradation and resorption properties of the materials, but also in consequent host angiogenic response.


Assuntos
Imageamento por Ressonância Magnética , Neovascularização Fisiológica , Próteses e Implantes , Animais , Reagentes de Ligações Cruzadas/farmacologia , Fluorescência , Hidrogéis/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
J Cell Mol Med ; 21(11): 2711-2719, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28470843

RESUMO

Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-ß) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement.


Assuntos
Ácido Ascórbico/farmacologia , Fibroblastos/efeitos dos fármacos , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta/farmacologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Reatores Biológicos , Técnicas de Cultura de Células , Linhagem Celular , Matriz Extracelular/química , Fibrinogênio/química , Fibrinogênio/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Mecanotransdução Celular , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Estresse Mecânico , Tendões/citologia , Tendões/efeitos dos fármacos , Tendões/crescimento & desenvolvimento , Tendões/metabolismo , Alicerces Teciduais
8.
Methods ; 84: 35-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25931428

RESUMO

A method for the preparation of suspension culture microcapsules used in the bioprocessing of human mesenchymal stem cells (hMSCs) is reported. The microcapsules are prepared from a semi-synthetic hydrogel comprising Pluronic®F127 conjugated to denatured fibrinogen. The Pluronic-fibrinogen adducts display a lower critical solubility temperature (LCST) at ∼30 °C, thus enabling mild, cell-compatible physical crosslinking of the microcapsules in a warm gelation bath. Cell-laden microgels were prepared from a solution of Pluronic-fibrinogen hydrogel precursor and hMSCs; these were cultivated for up to 15 days in laboratory-scale suspension bioreactors and harvested by reducing the temperature of the microcapsules to disassemble the physical polymer network. The viability, proliferation and cell recovery yields of the hMSCs were shown to be better than photo-chemically crosslinked microcapsules made from a similar material. The cell culture yields, which exceeded 300% after 15 days in suspension culture, were comparable to other microcarrier systems used for the mass production of hMSCs. The simplicity of this methodology, both in terms of the cell inoculation and mild recovery conditions, represent distinct advantages for stem cell bioprocessing with suspension culture bioreactors.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/citologia , Reatores Biológicos , Cápsulas/química , Técnicas de Cultura de Células/métodos , Proliferação de Células , Sobrevivência Celular , Reagentes de Ligações Cruzadas , Fibrinogênio/química , Humanos , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Poloxâmero/química
9.
Nano Lett ; 13(3): 1298-302, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23421921

RESUMO

Copolymer chains consisting of acrylamide units and guanine (G)-containing oligonucleotide-tethered acrylamide units undergo, in the presence of K(+) ions, cross-linking by G-quadruplexes to yield a hydrogel. The hydrogel is dissociated upon addition of 18-crown-6 ether that traps the K(+) ions. Reversible formation and dissociation of the hydrogel is demonstrated by the cyclic addition of K(+) ions and 18-crown-6 ether, respectively. Formation of the hydrogel in the presence of hemin results in a hemin/G-quadruplex-cross-linked catalytic hydrogel mimicking the function of horseradish peroxidase, reflected by the catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid), ABTS(2-), by H2O2 to ABTS(·-) and by the catalyzed generation of chemiluminescence in the presence of luminol/H2O2. Cyclic "ON" and "OFF" activation of the catalytic functions of the hydrogel are demonstrated upon the formation of the hydrogel in the presence of K(+) ions and its dissociation by 18-crown-6 ether, respectively. The hydrogel is characterized by rheology measurements, circular dichroism, and probing its chemical and photophysical properties.


Assuntos
Acrilamida/química , Quadruplex G , Hemina/química , Hidrogéis , Catálise , Luminescência , Oxirredução
10.
Cell Death Dis ; 15(7): 470, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956034

RESUMO

The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.


Assuntos
Preparações de Ação Retardada , Músculo Esquelético , Polietilenoglicóis , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/efeitos dos fármacos , Camundongos , Polietilenoglicóis/química , Microesferas , Fibrinogênio/metabolismo , Hidrogéis/química , Regeneração/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Fator de Transcrição PAX7/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Musculares/tratamento farmacológico , Doenças Musculares/patologia , Doenças Musculares/metabolismo
11.
Adv Healthc Mater ; 13(20): e2400040, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739022

RESUMO

3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.


Assuntos
Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Dispositivos Lab-On-A-Chip , Humanos , Movimento Celular/fisiologia , Hidrogéis/química , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/metabolismo , Técnicas de Cocultura/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Modelos Biológicos
12.
Biomater Adv ; 161: 213896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795473

RESUMO

Surgical site infection (SSI) is a common issue post-surgery which often prolongs hospitalization and can lead to serious complications such as sternal wound infection following cardiac surgery via median sternotomy. Controlled release of suitable antibiotics could allow maximizing drug efficacy and safety, and therefore achieving a desired therapeutic response. In this study, we have developed a vancomycin laden PEGylated fibrinogen-polyethylene glycol diacrylate (PF-PEGDA) hydrogel system that can release vancomycin at a controlled and predictable rate to be applied in SSI prevention. Two configurations were developed to study effect of the hydrogel on drug release, namely, vancomycin laden hydrogel and vancomycin solution on top of blank hydrogel. The relationship between the rigidity of the hydrogel and drug diffusion was found to comply with a universal power law, i.e., softer hydrogels result in a greater diffusion coefficient hence faster release rate. Besides, vancomycin laden hydrogels exhibited burst release, whereas the vancomycin solution on top of blank hydrogels exhibited lag release. A mathematical model was developed to simulate vancomycin permeation through the hydrogels. The permeation of vancomycin can be predicted accurately by using the mathematical model, which provided a useful tool to customize drug loading, hydrogel thickness and stiffness for personalized medication to manage SSI. To evaluate the potential of hydrogels for bone healing applications in cardiovascular medicine, we performed a proof-of-concept median sternotomy in rabbits and applied the hydrogels. The hydrogel formulations accelerated the onset of osteo-genetic processes in rabbits, demonstrating its potential to be used in human.


Assuntos
Antibacterianos , Preparações de Ação Retardada , Fibrinogênio , Hidrogéis , Polietilenoglicóis , Vancomicina , Vancomicina/administração & dosagem , Vancomicina/química , Vancomicina/farmacocinética , Polietilenoglicóis/química , Fibrinogênio/química , Animais , Hidrogéis/química , Preparações de Ação Retardada/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Liberação Controlada de Fármacos , Coelhos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Humanos
13.
Small ; 9(22): 3748-52, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23696311

RESUMO

Y-shaped DNA units functionalized with Ag-nanoclusters are crosslinked by nucleic acids to yield fluorescent hydrogels with controlled luminescence properties.


Assuntos
DNA/química , Hidrogéis/química , Ácidos Nucleicos/química , Prata/química , Nanoestruturas/química , Reologia
14.
J Assist Reprod Genet ; 30(10): 1279-88, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934019

RESUMO

PURPOSE: To improve human primordial follicle culture. METHODS: Thin or thick ovarian slices were cultured on alginate scaffolds or in PEG-fibrinogen hydrogels with or without bpV (pic), which prevents the conversion of phosphatidylinositol-trisphosphate (PIP3) to phosphatidylinositol-bisphosphate (PIP2) or 740Y-P which converts PIP2 to PIP3. Follicular growth was evaluated by follicular counts, Ki67 immunohistochemistry, and 17ß-estradiol (E2) levels. RESULTS: BpV (pic) had a destructive effect on cultured follicles. Thawed-uncultured samples had more primordial follicles than samples cultured in basic medium and fewer developing follicles than samples cultured in PEG-fibrinogen hydrogels with 740Y-P. There were more atretic follicles in samples cultured on alginate scaffolds than in PEG-fibrinogen hydrogels, and in samples cultured in PEG-fibrinogen hydrogels with 740Y-P than in PEG-fibrinogen hydrogels with basic medium. Ki67 staining was higher in PEG-fibrinogen hydrogels than on alginate scaffolds. E2 levels were higher in thick than in thin slices. CONCLUSIONS: PEG-fibrinogen hydrogels appear to have an advantage over alginate scaffolds for culturing human primordial follicles. Folliculogenesis is not increased in the presence of substances that enhance PIP3 production or with thin rather than thick sectioning.


Assuntos
Técnicas de Cultura de Órgãos , Folículo Ovariano/citologia , Alicerces Teciduais , Adolescente , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Criança , Pré-Escolar , Criopreservação , Feminino , Humanos , Hidrogéis , Neoplasias/patologia , Folículo Ovariano/cirurgia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosfatidilinositóis/química , Engenharia Tecidual , Compostos de Vanádio , Adulto Jovem
15.
Acta Biomater ; 164: 94-110, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030621

RESUMO

Methacrylation was performed on fibrinogen to design a new biomedical hydrogel for 3D cell culture or as a biodegradable delivery matrix for in vivo implantation. The methacrylation of denatured fibrinogen in solution was performed using methacrylic anhydride (MAA). The extent of fibrinogen methacrylation was quantified by proton NMR and controlled using stochiometric quantities of MAA during the reaction. The methacrylated fibrinogen (FibMA) hydrogels were formed by light-activated free-radical polymerization in the presence of macromolecular cross-linking polymers made from acrylated poly(ethylene glycol) (PEG). The biocompatibility and biodegradability of the FibMA hydrogels were characterized by in vitro assays and in vivo implantation experiments using quantitative magnetic resonance imaging (MRI) of the implant volume. The FibMA supported the growth and metabolic activity of human dermal fibroblasts in both 2D and 3D cultures. The methacrylation did not alter important biological attributes of the fibrinogen, including the ability to support cell adhesion and 3D cell culture, as well as to undergo proteolysis. Animal experiments confirmed the biodegradability of the FibMA for potential use as a scaffold in tissue engineering, as a bioink for 3D bioprinting, or as a biodegradable matrix for in vivo sustained delivery of bioactive factors. STATEMENT OF SIGNIFICANCE: This paper describes methacrylated fibrinogen (FibMA) and the formation of a biomedical hydrogel from FibMA for cell culture and other biomedical applications. Inspired from methacrylated gelatin (GelMA), the FibMA is made from blood-derived fibrinogen which is more suitable for clinical use. Sharing similar properties to other hydrogels made from methacrylated proteins, the FibMA has yet to be reported in the literature. In this manuscript, we provide the methodology to produce the FibMA hydrogels, we document the mechanical versatility of this new biomaterial, and we show the biocompatibility using 3D cell culture studies and in vivo implantations.


Assuntos
Fibrinogênio , Hemostáticos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Técnicas de Cultura de Células em Três Dimensões , Alicerces Teciduais/química
16.
Mater Today Bio ; 23: 100862, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046276

RESUMO

Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.

17.
Gels ; 9(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975692

RESUMO

Biotherapeutic soluble proteins that are recombinantly expressed in mammalian cells can pose a challenge when biomanufacturing in three-dimensional (3D) suspension culture systems. Herein, we tested a 3D hydrogel microcarrier for a suspension culture of HEK293 cells overexpressing recombinant Cripto-1 protein. Cripto-1 is an extracellular protein that is involved in developmental processes and has recently been reported to have therapeutic effects in alleviating muscle injury and diseases by regulating muscle regeneration through satellite cell progression toward the myogenic lineage. Cripto-overexpressing HEK293 cell lines were cultured in microcarriers made from poly (ethylene glycol)-fibrinogen (PF) hydrogels, which provided the 3D substrate for cell growth and protein production in stirred bioreactors. The PF microcarriers were designed with sufficient strength to resist hydrodynamic deterioration and biodegradation associated with suspension culture in stirred bioreactors for up to 21 days. The yield of purified Cripto-1 obtained using the 3D PF microcarriers was significantly higher than that obtained with a two-dimensional (2D) culture system. The bioactivity of the 3D-produced Cripto-1 was equivalent to commercially available Cripto-1 in terms of an ELISA binding assay, a muscle cell proliferation assay, and a myogenic differentiation assay. Taken together, these data indicate that 3D microcarriers made from PF can be combined with mammalian cell expression systems to improve the biomanufacturing of protein-based therapeutics for muscle injuries.

18.
J Biomed Mater Res A ; 111(9): 1441-1458, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066837

RESUMO

Human mesenchymal stromal cells (hMSCs) are of significant interest as a renewable source of therapeutically useful cells. In tissue engineering, hMSCs are implanted within a scaffold to provide enhanced capacity for tissue repair. The present study evaluates how mechanical properties of that scaffold can alter the phenotype and genotype of the cells, with the aim of augmenting hMSC differentiation along the myogenic, neurogenic or chondrogenic linages. The hMSCs were grown three-dimensionally (3D) in a hydrogel comprised of poly(ethylene glycol) (PEG)-conjugated to fibrinogen. The hydrogel's shear storage modulus (G'), which was controlled by increasing the amount of PEG-diacrylate cross-linker in the matrix, was varied in the range of 100-2000 Pascal (Pa). The differentiation into each lineage was initiated by a defined culture medium, and the hMSCs grown in the different modulus hydrogels were characterized using gene and protein expression. Materials having lower storage moduli (G' = 100 Pa) exhibited more hMSCs differentiating to neurogenic lineages. Myogenesis was favored in materials having intermediate modulus values (G' = 500 Pa), whereas chondrogenesis was favored in materials with a higher modulus (G' = 1000 Pa). Enhancing the differentiation pathway of hMSCs in 3D hydrogel scaffolds using simple modifications to mechanical properties represents an important achievement toward the effective application of these cells in tissue engineering.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Condrogênese/genética , Diferenciação Celular , Polietilenoglicóis , Engenharia Tecidual/métodos
19.
Dis Model Mech ; 16(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272428

RESUMO

In human dystrophies, progressive muscle wasting is exacerbated by ectopic deposition of fat and fibrous tissue originating from fibro/adipogenic progenitors (FAPs). In degenerating muscles, the ability of these cells to promote successful healing is attenuated, and FAPs aberrantly expand and differentiate into adipocytes and fibroblasts. Thus, arresting the fibro/adipogenic fate of FAPs, without affecting their physiological role, represents a valuable therapeutic strategy for patients affected by muscle diseases. Here, using a panel of adipose progenitor cells, including human-derived FAPs, coupled with pharmacological perturbations and proteome profiling, we report that LY2090314 interferes with a genuine adipogenic program acting as WNT surrogate for the stabilization of a competent ß-catenin transcriptional complex. To predict the beneficial impact of LY2090314 in limiting ectopic deposition of fat in human muscles, we combined a poly-ethylene-glycol-fibrinogen biomimetic matrix with these progenitor cells to create a miniaturized 3D model of adipogenesis. Using this scalable system, we demonstrated that a two-digit nanomolar dose of this compound effectively represses adipogenesis at higher 3D scale, thus indicating the potential for LY2090314 to limit FAP-derived fat infiltrates in dystrophic muscles.


Assuntos
Adipogenia , Distrofias Musculares , Humanos , Músculos , Células-Tronco , Músculo Esquelético , Diferenciação Celular
20.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055799

RESUMO

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/terapia , Dor Lombar/complicações , Crescimento Neuronal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa