Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(Suppl 3): 294, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32039702

RESUMO

BACKGROUND: Domestication and centuries of selective breeding have changed genomes of sheep breeds to respond to environmental challenges and human needs. The genomes of local breeds, therefore, are valuable sources of genomic variants to be used to understand mechanisms of response to adaptation and artificial selection. As a step toward this we performed a high-density genotyping and comprehensive scans for signatures of selection in the genomes from 15 local sheep breeds reared across Russia. RESULTS: Results demonstrated that the genomes of Russian sheep breeds contain multiple regions under putative selection. More than 50% of these regions matched with intervals identified in previous scans for selective sweeps in sheep genomes. These regions contain well-known candidate genes related to morphology, adaptation, and domestication (e.g., KITLG, KIT, MITF, and MC1R), wool quality and quantity (e.g., DSG@, DSC@, and KRT@), growth and feed intake (e.g., HOXA@, HOXC@, LCORL, NCAPG, LAP3, and CCSER1), reproduction (e.g., CMTM6, HTRA1, GNAQ, UBQLN1, and IFT88), and milk-related traits (e.g., ABCG2, SPP1, ACSS1, and ACSS2). In addition, multiple genes that are putatively related to environmental adaptations were top-ranked in selected intervals (e.g., EGFR, HSPH1, NMUR1, EDNRB, PRL, TSHR, and ADAMTS5). Moreover, we observed that multiple key genes involved in human hereditary sensory and autonomic neuropathies, and genetic disorders accompanied with an inability to feel pain and environmental temperatures, were top-ranked in multiple or individual sheep breeds from Russia pointing to a possible mechanism of adaptation to harsh climatic conditions. CONCLUSIONS: Our work represents the first comprehensive scan for signatures of selection in genomes of local sheep breeds from the Russian Federation of both European and Asian origins. We confirmed that the genomes of Russian sheep contain previously identified signatures of selection, demonstrating the robustness of our integrative approach. Multiple novel signatures of selection were found near genes which could be related to adaptation to the harsh environments of Russia. Our study forms a basis for future work on using Russian sheep genomes to spot specific genetic variants or haplotypes to be used in efforts on developing next-generation highly productive breeds, better suited to diverse Eurasian environments.


Assuntos
Aclimatação/genética , Técnicas de Genotipagem , Ovinos/genética , Ovinos/fisiologia , Animais , Cruzamento , Feminino , Lactação/genética , Leite/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodução/genética , Federação Russa , Ovinos/anatomia & histologia , Ovinos/metabolismo
2.
Genet Sel Evol ; 50(1): 29, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793424

RESUMO

BACKGROUND: Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. RESULTS: We recorded similar observed heterozygosity (0.354-0.395) and allelic richness (1.890-1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). CONCLUSIONS: In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations.


Assuntos
Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Sequenciamento Completo do Genoma/veterinária , Animais , Cruzamento , Genética Populacional , Heterozigoto , Característica Quantitativa Herdável , Federação Russa ,
3.
Animals (Basel) ; 13(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508138

RESUMO

This article presents data from experiments to determine the cryoresistance of Charollais sheep embryos, depending on the stage of embryo development and the method of freezing, as well as the results of embryo transfer. The study design consisted of a study on the cryopreservation of ewe embryos at different developmental stages (early, 2-8 blastomeric and late, at the morula/blastocyst stage), two cryopreservation protocols (slow freezing and ultra-fast vitrification), and embryo transfer of cryo- and fresh embryos. Embryos from Charollais sheep donors (n = 12) were recovered after induction of superovulation. The embryos were recovered surgically (laparotomy) on days 2 and 6 after insemination. Before there was transfer to recipients, part of embryos was cryopreserved using standard slow freezing and ultra-fast vitrification methods. The average ovarian response was 7.54 ovulations per donor, and 5.83 embryos per donor were collected. No effect of the cryopreservation method and embryo development stage on the preservation of the morphological structure of embryos was found. There were no significant differences in the survival rate of cryoembryos at different development stages, frozen using different techniques, and after transfer to recipients. Differences in cryoresistance between embryonic developmental stages in favor of the morula/blastocyst stage were found (survival after thawing 86.4% vs. 75.0% in early embryos). At different stages of development, the survival rate of fresh embryos (45.8%) compared to cryopreserved ones (30.2%) was significantly higher (p < 0.05), while among fresh ones, the best survival rate (50.0%) was observed after the transfer of morules and blastocysts.

4.
Front Genet ; 12: 708740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276802

RESUMO

Specific local environmental and sociocultural conditions have led to the creation of various goat populations in Russia. National goat diversity includes breeds that have been selected for down and mohair production traits as well as versatile local breeds for which pastoralism is the main management system. Effective preservation and breeding programs for local goat breeds are missing due to the lack of DNA-based data. In this work, we analyzed the genetic diversity and population structure of Russian local goats, including Altai Mountain, Altai White Downy, Dagestan Downy, Dagestan Local, Karachaev, Orenburg, and Soviet Mohair goats, which were genotyped with the Illumina Goat SNP50 BeadChip. In addition, we addressed genetic relationships between local and global goat populations obtained from the AdaptMap project. Russian goats showed a high level of genetic diversity. Although a decrease in historical effective population sizes was revealed, the recent effective population sizes estimated for three generations ago were larger than 100 in all studied populations. The mean runs of homozygosity (ROH) lengths ranged from 79.42 to 183.94 Mb, and the average ROH number varied from 18 to 41. Short ROH segments (<2 Mb) were predominant in all breeds, while the longest ROH class (>16 Mb) was the least frequent. Principal component analysis, Neighbor-Net graph, and Admixture clustering revealed several patterns in Russian local goats. First, a separation of the Karachaev breed from other populations was observed. Moreover, genetic connections between the Orenburg and Altai Mountain breeds were suggested and the Dagestan breeds were found to be admixed with the Soviet Mohair breed. Neighbor-Net analysis and clustering of local and global breeds demonstrated the close genetic relations between Russian local and Turkish breeds that probably resulted from past admixture events through postdomestication routes. Our findings contribute to the understanding of the genetic relationships of goats originating in West Asia and Eurasia and may be used to design breeding programs for local goats to ensure their effective conservation and proper management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa