Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Technol Biotechnol ; 92(9): 2254-2266, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28919656

RESUMO

BACKGROUND: Development of circular economy requires significant advances in the technologies for valorisation of waste, as waste becomes new feedstock. Food waste is a particularly important feedstock, containing large variation of complex chemical functionality. Although most food waste sources are complex mixtures, waste from food processing, no longer suitable for the human food chain, may also represent relatively clean materials. One such material requiring valorisation is cocoa butter. RESULTS: Epoxidation of a triglyceride from a food waste source, processing waste cocoa butter, into the corresponding triglyceride epoxide was carried out using a modified Ishii-Venturello catalyst in batch and continuous flow reactors. The batch reactor achieved higher yields due to the significant decomposition of hydrogen peroxide in the laminar flow tubular reactor. Integral and differential models describing the reaction and the phase transfer kinetics were developed for the epoxidation of cocoa butter and the model parameters were estimated. Ring-opening of the epoxidised cocoa butter was undertaken to provide polyols of varying molecular weight (Mw = 2000-84 000 Da), hydroxyl value (27-60 mg KOH g-1) and acid value (1-173 mg KOH g-1), using either aqueous ortho-phosphoric acid (H 3 PO 4) or boron trifluoride diethyl etherate (BF 3·OEt2)-mediated oligomerisation in bulk, using hexane or tetrahydrofuran (THF) as solvents. The thermal and tensile properties of the polyurethanes obtained from the reaction of these polyols with 4,4'-methylene diphenyl diisocyanate (MDI) are described. CONCLUSION: The paper presents a complete valorisation scheme for a food manufacturing industry waste stream, starting from the initial chemical transformation, developing a process model for the design of a scaled-up process, and leading to synthesis of the final product, in this case a polymer. This work describes aspects of optimisation of the conversion route, focusing on clean synthesis and also demonstrates the interdisciplinary nature of the development projects, requiring input from different areas of chemistry, process modelling and process design. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
J Org Chem ; 77(16): 6778-88, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22860762

RESUMO

The 4-exo and 5-exo-trig atom-transfer cyclizations of 1, 8a-e, 9, 12, and 13 can be mediated with as little as 0.05 mol % of Cu(TPMA)SO(4)·5H(2)O in the presence of 2.5 mol % of borohydride salts in 10 min at room temperature in air. This formal "activators generated by electron transfer" (AGET) procedure utilizes a cheap and oxidatively stable copper source (CuSO(4)·5H(2)O) and can be carried out in environmentally benign solvents (EtOH). It is possible to alter the product distribution in the 5-endo radical-polar crossover reactions of 10a,b and 11 by tailoring the amount of borohydride. Cyclization onto alkynes 14 and 15 is also possible in only 20 min. Controlled radical polymerization of styrene, with increased rates over conventional atom-transfer radical polymerization (ATRP), can be carried out in a controlled fashion (Mn, PDI) using either CuBr or CuSO(4)·5H(2)O and Bu(4)NBH(4).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa