Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mikrochim Acta ; 191(3): 131, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351209

RESUMO

Histones are basic proteins with an isoelectric point around 11. It has been shown that the level of plasma circulating histones increases significantly during sepsis, and circulating free histones are associated with sepsis severity and mortality. It was found that the median plasma total free histone concentration of sepsis ICU non-survivors is higher compared to survivors. Therefore, histone concentration can serve as a prognostic indicator and there is a need for a simple, low-cost, and rapid method for measuring histone levels. In this work, we have developed a microfluidic device containing an isoelectric membrane made of dehydrated agarose gel of a specific pH embedded in a porous membrane for isoelectric trapping of histones rapidly. Although isoelectric gates have been used for trapping proteins before, they have to be introduced at the time of the experiment. Here, we show that isoelectric gates formed by gels loaded in a scaffold can be integrated directly into the fabrication process flow, dehydrated for storage, and rehydrated during the experiment and still function effectively to achieve isoelectric trapping. A low-cost and rapid microfabrication technique, xurography, was used for agarose integration and device fabrication. The integrated device was tested with samples containing buffered histone, histone in the presence of high-concentration bovine serum albumin (BSA), and histone spiked in blood plasma. The results show that the device can be used to distinguish between survivors and non-survivors of sepsis in less than 10 min, making it suitable as a point-of-care device for sepsis prognosis.


Assuntos
Histonas , Sepse , Humanos , Sefarose , Prognóstico , Sepse/diagnóstico , Dispositivos Lab-On-A-Chip
2.
Am J Physiol Cell Physiol ; 325(3): C580-C591, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486066

RESUMO

Bioreactors are advanced biomanufacturing tools that have been widely used to develop various applications in the fields of health care and cellular agriculture. In recent years, there has been a growing interest in the use of bioreactors to enhance the efficiency and scalability of these technologies. In cell therapy, bioreactors have been used to expand and differentiate cells into specialized cell types that can be used for transplantation or tissue regeneration. In cultured meat production, bioreactors offer a controlled and efficient means of producing meat without the need for animal farming. Bioreactors can support the growth of muscle cells by providing the necessary conditions for cell proliferation, differentiation, and maturation, including the provision of oxygen and nutrients. This review article aims to provide an overview of the current state of bioreactor technology in both cell therapy and cultured meat production. It will examine the various bioreactor types and their applications in these fields, highlighting their advantages and limitations. In addition, it will explore the future prospects and challenges of bioreactor technology in these emerging fields. Overall, this review will provide valuable insights for researchers and practitioners interested in using bioreactor technology to develop innovative solutions in the biomanufacturing of therapeutic cells and cultured meat.


Assuntos
Reatores Biológicos , Biotecnologia , Terapia Baseada em Transplante de Células e Tecidos , Produtos da Carne , Terapia Baseada em Transplante de Células e Tecidos/economia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Produtos da Carne/economia , Biotecnologia/economia , Biotecnologia/métodos , Biotecnologia/tendências , Técnicas de Cultura de Células
3.
Analyst ; 148(15): 3551-3558, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395443

RESUMO

Phosphate is important for plant and animal growth. Therefore, it is commonly added as a fertilizer in agricultural fields. Phosphorus is typically measured using colorimetric or electrochemical sensors. Colorimetric sensors suffer from a limited measuring range and toxic waste generation while electrochemical sensors suffer from long-term drifts due to reference electrodes. Here, we propose a solid-state, reagent-free and reference electrode-free chemiresistive sensor for measuring phosphate using single-walled carbon nanotubes functionalized with crystal violet. The functionalized sensor exhibited a measuring range from 0.1 mM to 10 mM at pH 8. No significant interference was observed for common interfering anions like nitrates, sulphates, and chlorides. This study showed a proof-of-concept chemiresistive sensor, which can potentially be used to measure phosphate levels in hydroponics and aquaponics systems. The dynamic measuring range further needs to be extended for surface water samples.

4.
Cells Tissues Organs ; 211(3): 304-312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33440375

RESUMO

Global meat consumption has been growing on a per capita basis over the past 20 years resulting in ever-increasing devotion of resources in the form of arable land and potable water to animal husbandry which is unsustainable and inefficient. One approach to meet this insatiable demand is to use biofabrication methods used in tissue engineering in order to make skeletal muscle tissue-like constructs known as cultivated meat to be used as a food source. Here, we demonstrate the use of a scaffold-free biofabrication method that forms cell sheets composed of murine adipocytes and skeletal muscle cells and assembles these sheets in parallel to create a 3D meat-like construct without the use of any exogenous materials. This layer-by-layer self-assembly and stacking process is fast (4 days of culture to form sheets and few hours for assembly) and scalable (stable sheets with diameters >3 cm are formed). Tissues formed with only muscle cells were equivalent to lean meat with comparable protein and fat contents (lean beef had 1.5 and 0.9 times protein and fat, respectively, as our constructs) and incorporating adipocyte cells in different ratios to myoblasts and/or treatment with different media cocktails resulted in a 5% (low fat meat) to 35% (high fat meat) increase in the fat content. Not only such constructs can be used as cultivated meat, they can also be used as skeletal muscle models.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Adipócitos , Animais , Bovinos , Carne , Camundongos , Músculo Esquelético/fisiologia , Engenharia Tecidual/métodos
5.
Mikrochim Acta ; 189(4): 146, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298718

RESUMO

Cell-free DNA (cfDNA) content in plasma has been studied as a biomarker for sepsis. Recent publications show that the cfDNA content in sepsis patients entering intensive care unit who were likely to survive had a total cfDNA concentration of 1.16 ± 0.13 µg/mL compared to 4.65 ± 0.48 µg/mL of non-survivors. Current methods for measuring cfDNA content in plasma were designed to amplify and measure low concentrations of specific DNA, making them unsuitable for low-cost measurement of total cfDNA content in plasma. Here, we have developed a point of care (POC) device that uses a thread silicone device as a medium to store a fluorescent dye which eliminates the need for preparatory steps, external aliquoting and dispensing of reagents, preconcentration, and external mixing while reducing the detection cost. The device was paired with a portable imaging system with an excitation filter at 472 ± 10 nm and an emission filter of 520 ± 10 nm that can be operated with just 100 mA current supply. The device was demonstrated for use in the quantification of buffered cfDNA samples in a range 1-6 µg/mL with a sensitivity of 5.72 AU/µg/mL and with cfDNA spiked in plasma with a range of 1-3 µg/mL and a sensitivity of 5.43 AU/µg/mL. The results showed that the device could be used as a low-cost, rapid, and portable POC device for differentiating between survivors and non-survivors of sepsis within 20 min.


Assuntos
Ácidos Nucleicos Livres , Sepse , Ácidos Nucleicos Livres/sangue , Humanos , Dispositivos Lab-On-A-Chip , Prognóstico , Sepse/diagnóstico
6.
Langmuir ; 37(41): 12163-12178, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34624190

RESUMO

Graphene-based pH sensors are a robust, durable, sensitive, and scalable approach for the sensitive detection of pH in various environments. However, the mechanisms through which graphene responds to pH variations are not well-understood yet. This study provides a new look into the surface science of graphene-based pH sensors to address the existing gaps and inconsistencies among the literature concerning sensing response, the role of defects, and surface/solution interactions. Herein, we demonstrate the dependence of the sensing response on the defect density level of graphene, measured by Raman spectroscopy. At the crossover point (ID/IG = 0.35), two countervailing mechanisms balance each other out, separating two regions where either a surface defect induced (negative slope) or a double layer induced (positive slope) response dominates. For ratios above 0.35, the pH-dependent induction of charges at surface functional groups (both pH-sensitive and nonsensitive groups) dominates the device response. Below a ratio of 0.35, the response is dominated by the modulation of charge carriers in the graphene due to the electric double layer formed from the interaction between the graphene surface and the electrolyte solution. Selective functionalization of the surface was utilized to uncover the dominant acid-base interactions of carboxyl and amine groups at low pH while hydroxyl groups control the high pH range sensitivity. The overall pH-sensing characteristics of the graphene will be determined by the balance of these two mechanisms.


Assuntos
Grafite , Concentração de Íons de Hidrogênio , Análise Espectral Raman
7.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046024

RESUMO

Electrodeposition is a versatile technique for the fabrication of electrodes in micro-electroanalytical devices. Conductive but low-cost materials, such as copper, can be coated with functional yet higher-cost materials such as gold or silver using electrodeposition to lower the overall cost while maintaining functionality. When the electrodeposition of multiple materials is required, current methods use a multistep process that deposits one material at a time, which requires a significant amount of time and a significant number of steps. Additionally, they use a large volume of electrolytes suitable for coating large objects, which is wasteful and unnecessary for the prototyping or coating of microelectrodes with a small area. In this paper, a new method of electroplating is introduced in which we used gels to immobilize and pattern electroplating electrolytes on a substrate surface. Agarose, as an immobilizing medium, enables the immersion of the substrate in a common working electrolyte without cross-mixing different electrolytes. We demonstrate the printing of jelly electrolytes by using spot-dispensing or microfluidic flow. Xurographically patterned films laminated on the substrate function as a mask and confine the printed gels to desired locations. After printing, the substrate is placed in a common working electrolyte container, and multimaterial patterns are produced through the application of an electrical current in a single step.

8.
Biomacromolecules ; 19(1): 62-70, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29168379

RESUMO

We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.


Assuntos
Adesivos/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Ácidos Borônicos/química , Reagentes de Ligações Cruzadas/química , Células Epiteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Álcool de Polivinil/química
9.
Electrophoresis ; 36(2): 298-304, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348197

RESUMO

Counting of Escherichia coli DH5α-cell suspensions in PBS is performed using a microflow cytometer based on a photonic-microfluidic integrated device. Side-scattered light signals are used to count the E. coli cells. A detection efficiency of 92% is achieved when compared with the expected count from a hemocytometer. The detection efficiency is correlated to the ratio of sample to sheath flow rates. It is demonstrated that E. coli can be easily distinguished from beads of similar sizes (2-4 µm) as their scattering intensities are different.


Assuntos
Escherichia coli , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Técnicas Analíticas Microfluídicas , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Desenho de Equipamento , Poliestirenos
10.
Sensors (Basel) ; 14(9): 17275-303, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25230309

RESUMO

Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.


Assuntos
Água Potável/análise , Água Potável/química , Monitoramento Ambiental/instrumentação , Análise Espectral Raman/instrumentação , Poluentes Químicos da Água/análise , Qualidade da Água , Desenho de Equipamento , Análise de Falha de Equipamento , Sistemas On-Line
11.
Gels ; 10(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534604

RESUMO

Sepsis, a life-threatening condition resulting from a failing host response to infection, causes millions of deaths annually, necessitating rapid and simple prognostic assessments. A variety of genomic and proteomic biomarkers have been developed for sepsis. For example, it has been shown that the level of plasma cell-free DNA (cfDNA) and circulating histones increases considerably during sepsis, and they are linked with sepsis severity and mortality. Developing a diagnostic tool that is capable of assessing such diverse biomarkers is challenging as the detection methodology is quite different for each. Here, a fully integrated microfluidic device capable of detecting a genomic biomarker (cfDNA) and a proteomic biomarker (total circulating histones) using a common detection platform has been demonstrated. The microfluidic device utilizes dehydrated agarose gates loaded with pH-specific agarose to electrophoretically trap cfDNA and histones at their respective isoelectric points. It also incorporates fluorescent dyes within the device, eliminating the need for off-chip sample preparation and allowing the direct testing of plasma samples without the need for labeling DNA and histones with fluorescent dyes beforehand. Xurography, which is a low-cost and rapid method for fabrication of microfluidics, is used in all the fabrication steps. Experimental results demonstrate the effective accumulation and separation of cfDNA and histones in the agarose gates in a total processing time of 20 min, employing 10 and 30 Volts for cfDNA and histone accumulation and detection, respectively. The device can potentially be used to distinguish between the survivors and non-survivors of sepsis. The integration of the detection of both biomarkers into a single device and dye immobilization enhances its clinical utility for rapid point-of-care assessment of sepsis prognosis.

12.
ACS Biomater Sci Eng ; 10(7): 4612-4625, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38904210

RESUMO

Premature neonates with underdeveloped lungs experience respiratory issues and need respiratory support, such as mechanical ventilation or extracorporeal membrane oxygenation (ECMO). The "artificial placenta" (AP) is a noninvasive approach that supports their lungs and reduces respiratory distress, using a pumpless oxygenator connected to the systemic circulation, and can address some of the morbidity issues associated with ECMO. Over the past decade, microfluidic blood oxygenators have garnered significant interest for their ability to mimic physiological conditions and incorporate innovative biomimetic designs. Achieving sufficient gas transfer at a low enough pressure drop for a pumpless operation without requiring a large volume of blood to prime such an oxygenator has been the main challenge with microfluidic lung assist devices (LAD). In this study, we improved the gas exchange capacity of our microfluidic-based artificial placenta-type LAD while reducing its priming volume by using a modified fabrication process that can accommodate large-area thin film microfluidic blood oxygenator (MBO) fabrication with a very high gas exchange surface. Additionally, we demonstrate the effectiveness of a LAD assembled by using these scaled-up MBOs. The LAD based on our artificial placenta concept effectively increases oxygen saturation levels by 30% at a flow rate of 40 mL/min and a pressure drop of 23 mmHg in room air, which is sufficient to support partial oxygenation for 1 kg preterm neonates in respiratory distress. When the gas ambient environment was changed to pure oxygen at atmospheric pressure, the LAD would be able to support premature neonates weighing up to 2 kg. Furthermore, our experiments reveal that the LAD can handle high blood flow rates of up to 150 mL/min and increase oxygen saturation levels by ∼20%, which is equal to an oxygen transfer of 7.48 mL/min in an enriched oxygen environment and among the highest for microfluidic AP type devices. Such performance makes this LAD suitable for providing essential support to 1-2 kg neonates in respiratory distress.


Assuntos
Placenta , Feminino , Gravidez , Humanos , Órgãos Artificiais , Recém-Nascido , Dispositivos Lab-On-A-Chip , Pulmão , Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenação por Membrana Extracorpórea/métodos , Troca Gasosa Pulmonar/fisiologia
13.
Membranes (Basel) ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103807

RESUMO

State-of-art face masks and respirators are fabricated as single-use devices using microfibrous polypropylene fabrics, which are challenging to be collected and recycled at a community scale. Compostable face masks and respirators can offer a viable alternative to reducing their environmental impact. In this work, we have developed a compostable air filter produced by electrospinning a plant-derived protein, zein, on a craft paper-based substrate. The electrospun material is tailored to be humidity tolerant and mechanically durable by crosslinking zein with citric acid. The electrospun material demonstrated a high particle filtration efficiency (PFE) of 91.15% and a high pressure drop (PD) of 191.2 Pa using an aerosol particle diameter of 75 ± 2 nm at a face velocity of 10 cm/s. We deployed a pleated structure to reduce the PD or improve the breathability of the electrospun material without compromising the PFE over short- and long-duration tests. Over a 1 h salt loading test, the PD of a single-layer pleated filter increased from 28.9 to 39.1 Pa, while that of the flat sample increased from 169.3 to 327 Pa. The stacking of pleated layers enhanced the PFE while retaining a low PD; a two-layer stack with a pleat width of 5 mm offers a PFE of 95.4 ± 0.34% and a low PD of 75.2 ± 6.1 Pa.

14.
Biomed Opt Express ; 14(9): 4759-4774, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791279

RESUMO

Oxygen concentration measurement in 3D hydrogels is vital in 3D cell culture and tissue engineering. However, standard 3D imaging systems capable of measuring oxygen concentration with adequate precision are based on advanced microscopy platforms, which are not accessible in many laboratories due to the system's complexity and the high price. In this work, we present a fast and low-cost phosphorescence lifetime imaging design for measuring the lifetime of oxygen-quenched phosphorescence emission with 0.25 µs temporal precision and sub-millimeter spatial resolution in 3D. By combining light-sheet illumination and the frequency-domain lifetime measurement using a commercial rolling-shutter CMOS camera in the structure of a conventional optical microscope, this design is highly customizable to accommodate application-specific research needs while also being low-cost as compared to advanced instruments. As a demonstration, we made a fluidic device with a gas-permeable film to create an artificial oxygen gradient in the hydrogel sample. Dye-embedded beads were distributed in the hydrogel to conduct continuous emission lifetime monitoring when nitrogen was pumped through the fluidic channel and changed oxygen distribution in the sample. The dynamics of the changes in lifetime co-related with their location in the gel of size 0.5 mm×1.5 mm×700 µm demonstrate the ability of this design to measure the oxygen concentration stably and precisely in 3D samples.

15.
J Mech Behav Biomed Mater ; 147: 106092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689009

RESUMO

This study developed a customized hydrostatic pressure-based loading environment to investigate the effect of static hydrostatic pressure on the periodontal ligament fibroblasts (PDLf) in a three-dimensional (3D) collagen-based model. The cylindrical tissue constructs were comprised of PDL fibroblast cells seeded in type I collagen matrices and divided into three experimental groups: Control (no load), low-load (∼0.07 kPa), and high-load (∼60 kPa), all subjected to 24 h of experimental duration. Cells in the 3D construct were stained with fluorophore-conjugated antibodies for cytoskeletal protein F-actin and matricellular protein periostin. Cell culture supernatant was assessed for receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) expression. Transmission electron microscopy examined the contact between the cells and the collagen matrix. Ultrastructural changes in the 3D collagen matrix were also analyzed using scanning electron microscopy. Experiments were performed in triplicates, and data was analyzed using one-way ANOVA (p < 0.05). The 3D PDLf constructs from the low-load group demonstrated the highest levels of homogeneous cell distribution and higher expression of F-actin and periostin with enhanced interaction with the matrix. The collagen matrix in this group showed more closely packed fibers forming thicker bundles when compared to the control and the high-load 3D PDLf constructs. Nonuniform cell distribution with decreased expression of F-actin and periostin was observed in the control and high-load PDLf constructs. The high-load group showed the highest RANKL/OPG expression. This study demonstrated low-level hydrostatic pressure's role in regulating PDLf functions and extracellular matrix response, while excessive hydrostatic pressure may be detrimental to PDL fibroblast cell function.

16.
Anal Chim Acta ; 1264: 341248, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230727

RESUMO

The laser-induced method to prepare three-dimensional (3D) porous graphene has been widely used in many fields owing to its low-cost, easy operation, maskless patterning and ease of mass production. Metal nanoparticles are further introduced on the surface of 3D graphene to enhance its property. The existing methods, however, such as laser irradiation and electrodeposition of metal precursor solution, suffer from many shortcomings, including complicated procedure of metal precursor solution preparation, strict experimental control, and poor adhesion of metal nanoparticles. Herein, a solid-state, reagent-free, and one-step laser-induced strategy has been developed for the fabrication of metal nanoparticle modified-3D porous graphene nanocomposites. Commercial transfer metal leaves were covered on a polyimide film followed by direct laser irradiation to produce 3D graphene nanocomposites modified with metal nanoparticles. The proposed method is versatile and applicable to incorporate various metal nanoparticles including gold silver, platinum, palladium, and copper. Furthermore, the 3D graphene nanocomposites modified with AuAg alloy nanoparticles were successfully synthesized in both 21 Karat (K) and 18K gold leaves. Its electrochemical characterization demonstrated that the synthesized 3D graphene-AuAg alloy nanocomposites exhibited excellent electrocatalytic properties. Finally, we fabricated LIG-AuAg alloy nanocomposites as enzyme-free flexible sensors for glucose detection. The LIG-18K electrodes exhibited the superior glucose sensitivity of 1194 µA mM-1 cm-2 and low detection limits of 0.21 µM. The LIG-21K nanocomposite sensors showed two linear ranges from 1 µM to 1 mM and 2 mM-20 mM with good sensitivity. Furthermore, the flexible glucose sensor showed good stability, sensitivity, and ability to sense in blood plasma samples. The proposed one-step fabrication of reagent-free and metal alloy nanoparticles on LIG with excellent electrochemical performance opens up possibilities for diversifying potential applications of sensing, water treatment and electrocatalysis.

17.
ACS Appl Eng Mater ; 1(11): 3040-3052, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38031538

RESUMO

Disinfection of water is essential to prevent the growth of pathogens, but at high levels, it can cause harm to human health. Therefore, accurate monitoring of disinfectant concentrations in water is essential to ensure safe drinking water. The use of multiple disinfectants at different stages in water treatment plants makes it necessary to also identify the type and concentrations of all of the disinfectant species present. Here, we demonstrate an effective approach to identify and quantify multiple disinfectants (using the example of free chlorine and potassium permanganate) in water using single-walled carbon nanotube (SWCNT)-based reagent-free chemiresistive sensing arrays. Facile fabrication of chemiresistive devices makes them a popular choice for the implementation of sensor arrays. Our sensing array consists of functionalized and unfunctionalized (blank) SWCNT sensors to distinguish the disinfectants. The distinct responses from the different sensors at varying concentrations and pH can be fitted to the mathematical model of a Langmuir adsorption isotherm separately for each sensor. Blank and functionalized sensors respond through different mechanisms that result in varying responses that are concentration- and pH-dependent. Chemometric techniques such as principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) were used to analyze the sensor data. PCA showed an excellent separation of the analytes over five different pHs (5.5, 6.5, 7.5, 8.5, and 9.5). PLS-DA provided excellent separability as well as good predictability with a Q2 of 94.26% and an R2 of 95.67% for the five pH regions of the two analytes. This proof-of-concept solid-state chemiresistive sensing array can be developed for specific disinfectants that are commonly used in water treatment plants and can be deployed in water distribution and monitoring facilities. We have demonstrated the applicability of chemiresistive devices in a sensor array format for the first time for aqueous disinfectant monitoring.

18.
Small ; 8(7): 1092-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22354786

RESUMO

The development of a robust method for the synthesis of highly monodisperse microgels cross-linked with degradable covalent bonds offers the potential for fabricating microgels with the highly controllable porosities, cell interactions, and degradation half-lives required for biomedical applications. A microfluidic chip is designed that enables the on-chip mixing and emulsification of two reactive polymer solutions (hydrazide and aldehyde-functionalized carbohydrates) to form monodisperse, hydrazone cross-linked microgels in the size range of ≈40-100 µm. The device can be run continuously for at least 30 h without a significant drift in particle size. The resulting microgels have a homogeneous bulk composition and can swell and deswell as the solvent conditions change in predictable ways based on the chemistry of the reactive polymers used, thereby enabling improved control over both the chemistry and morphology of the resulting microgels relative to other reported approaches. The in situ gelation chemistry used facilitates rapid microgel formation within the droplets without requiring the use of UV light or heating to initiate polymerization, thus making this approach of particular potential utility in cell encapsulation or drug delivery (as demonstrated).


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Microfluídica/métodos , Portadores de Fármacos
19.
Microsyst Nanoeng ; 8: 20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242358

RESUMO

The fabrication of nanostructures and nanopatterns is of crucial importance in microelectronics, nanofluidics, and the manufacture of biomedical devices and biosensors. However, the creation of nanopatterns by means of conventional nanofabrication techniques such as electron beam lithography is expensive and time-consuming. Here, we develop a multistep miniaturization approach using prestressed polymer films to generate nanopatterns from microscale patterns without the need of complex nanolithography methods. Prestressed polymer films have been used as a miniaturization technique to fabricate features with a smaller size than the initial imprinted features. However, the height of the imprinted features is significantly reduced after the thermal shrinking of the prestressed films due to the shape memory effect of the polymer, and as a result, the topographical features tend to disappear after shrinking. We have developed a miniaturization approach that controls the material flow and maintains the shrunken patterns by applying mechanical constraints during the shrinking process. The combination of hot embossing and constrained shrinking makes it possible to reduce the size of the initial imprinted features even to the nanoscale. The developed multistep miniaturization approach allows using the shrunken pattern as a master for a subsequent miniaturization cycle. Well-defined patterns as small as 100 nm are fabricated, showing a 10-fold reduction in size from the original master. The developed approach also allows the transfer of the shrunken polymeric patterns to a silicon substrate, which can be used as a functional substrate for many applications or directly as a master for nanoimprint lithography.

20.
Biomicrofluidics ; 16(5): 054108, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36313189

RESUMO

Hydrogels are a critical component of many microfluidic devices. They have been used in cell culture applications, biosensors, gradient generators, separation microdevices, micro-actuators, and microvalves. Various techniques have been utilized to integrate hydrogels into microfluidic devices such as flow confinement and gel photopolymerization. However, in these methods, hydrogels are typically introduced in post processing steps which add complexity, cost, and extensive fabrication steps to the integration process and can be prone to user induced variations. Here, we introduce an inexpensive method to locally integrate hydrogels into microfluidic devices during the fabrication process without the need for post-processing. In this method, porous and fibrous membranes such as electrospun membranes are used as scaffolds to hold gels and they are patterned using xurography. Hydrogels in various shapes as small as 200 µm can be patterned using this method in a scalable manner. The electrospun scaffold facilitates drying and reconstitution of these gels without loss of shape or leakage that is beneficial in a number of applications. Such reconstitution is not feasible using other hydrogel integration techniques. Therefore, this method is suitable for long time storage of hydrogels in devices which is useful in point-of-care (POC) devices. This hydrogel integration method was used to demonstrate gel electrophoretic concentration and quantification of short DNA (150 bp) with different concentrations in rehydrated agarose embedded in electrospun polycaprolactone (PCL) membrane. This can be developed further to create a POC device to quantify cell-free DNA, which is a prognostic biomarker for severe sepsis patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa