Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(9): 584, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048277

RESUMO

A tannase-positive Bacillus gottheilii M2S2 and Bacillus cereus M1GT were co-cultivated for the production of gallic acid using tannic acid as the sole carbon source through submerged fermentation. Taguchi orthogonal array of design of experimental methodology was used to estimate the influence and significance of tannic acid concentration, glucose concentration, agitation speed, and inoculum size on the gallic acid production in a shake flask. Among all the factors, agitation speed contributed the highest for gallic acid production (28.28%), followed by glucose concentration (21.59%), inoculum size (19.6%), tannic acid concentration (19.54%), and pH (11.09%). Validation experiments were executed at the found optimized conditions which resulted in a 6.36-fold increase in gallic acid yield compared to unoptimized conditions. Further, the kinetics of growth, tannic acid degradation, and gallic acid yield were evaluated at the optimized conditions. The kinetic parameters Y x/s, Y p/s, and Y p/x were determined as 0.292 mg of cells/mg of tannic acid, 22.2 µg of gallic acid/mg of tannic acid, and 70.76 µg of gallic acid/mg of cells with a growth rate of 0.273 h -1 after 24 h of fermentation. Finally, the antimicrobial activity of the product gallic acid was investigated against food-borne pathogenic E. coli, S. aureus, and Serriatia marcescens and showed a zone of inhibition of 2 cm, 1.6 cm, and 1.3 cm, respectively, using the agar disc diffusion technique. Thus, the cost-effective bioproduct gallic acid proved to be potentially effective to control food poisoning diseases and preserve foodstuff.


Assuntos
Anti-Infecciosos , Ácido Gálico , Anti-Infecciosos/farmacologia , Técnicas de Cocultura , Escherichia coli/metabolismo , Fermentação , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Glucose , Cinética , Staphylococcus aureus/metabolismo , Taninos/metabolismo , Taninos/farmacologia
2.
Prep Biochem Biotechnol ; 48(9): 799-807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303763

RESUMO

Production of tannase was performed in packed bed reactor filled with an inert support polyurethane foam (PUF) using Bacillus gottheilii M2S2. The influence of process parameters such as fermentation time (24-72 h), tannic acid concentration (0.5-2.5% w/v), inoculum size (7-12% v/v), and aeration rate (0-0.2 L/min) on tannase production with PUF were analyzed using one variable at a time (OVAT) approach. The outcome of OVAT was optimized by central composite design. Based on the statistical investigation, the proposed mathematical model recommends 1% (w/v) of tannic acid, 10% (v/v) of inoculum size and 0.13 L/min of aeration rate for maximum production (76.57 ± 1.25 U/L). The crude enzyme was purified using ammonium sulfate salt precipitation method followed by dialysis. The biochemical properties of partially purified tannase were analyzed and found the optimum pH (4.0), temperature (40 °C) for activity, and Km (1.077 mM) and Vmax (1.11 µM/min) with methyl gallate as a substrate. Based on the SDS-PAGE analysis, tannase exhibited two bands with molecular weights of 57.5 and 42.3 kDa. Briefly, the partially purified tannase showed 4.2 fold increase (63 ± 1.60 U/L) in comparison to the submerged fermentation and the production of tannase was validated by using NMR spectrometer.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/biossíntese , Hidrolases de Éster Carboxílico/biossíntese , Técnicas de Cultura de Células/métodos , Fermentação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Taninos/química , Temperatura
3.
Int J Biol Macromol ; 265(Pt 1): 130846, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492689

RESUMO

The dwindling supply of the petroleum product and its carbon footprint has initiated search for a sustainable fuel and alternate feed-stocks. One such underexplored feedstock is chitin, a waste derived from sea food processing. The limitation of insolubility and crystallinity inherent in chitin is addressed with the chitin hydrolysates. In the present study, a chitinases producing marine isolate was isolated from the sediments of Arabian Sea from a depth of 20 m. In order to increase the expression of the chitinases, sequential optimisation using one factor at a time and Taguchi experimental designs were employed which resulted in a yield of 13.46 U/mL which was 2.62 fold higher than the initial bioprocess condition values. In a two-step refinery protocol, Candida albicans was evolved towards chitooligosaccharides using chemically synthesized hydrolysates. In a fed -batch fermentation design the Candida yielded a 12.8 % conversion of these commercial chitin oligosaccharides into bioethanol in a run time of 48 h. This is the first report demonstrating the potential of Candida to utilise chitin oligosaccharides for the production of bioethanol.


Assuntos
Quitinases , Quitosana , Quitinases/química , Quitina/química , Oligossacarídeos
4.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971450

RESUMO

In recent years, the greener route of the deacetylation of chitin to chitosan using the enzyme chitin deacetylase has gained importance. Enzymatically converted chitosan with emulating characteristics has a broad range of applications, particularly in the biomedical field. Several recombinant chitin deacetylases from various environmental sources have been reported, but there are no studies on process optimization for the production of these recombinant chitin deacetylases. The present study used the central composite design of response surface methodology to maximize the recombinant bacterial chitin deacetylase (BaCDA) production in E. coli Rosetta pLysS. The optimized process conditions were 0.061% glucose concentration, 1% lactose concentration, an incubation temperature of 22 °C, an agitation speed at 128 rpm, and 30 h of fermentation. At optimized conditions, the expression due to lactose induction was initiated after 16 h of fermentation. The maximum expression, biomass, and BaCDA activity were recorded 14 h post-induction. At the optimized condition, the BaCDA activity of expressed BaCDA was increased ~2.39-fold. The process optimization reduced the total fermentation cycle by 22 h and expression time by 10 h post-induction. This is the first study to report the process optimization of recombinant chitin deacetylase expression using a central composite design and its kinetic profiling. Adapting these optimal growth conditions could result in cost-effective, large-scale production of the lesser-explored moneran deacetylase, embarking on a greener route for biomedical-grade chitosan production.


Assuntos
Quitosana , Escherichia coli/genética , Escherichia coli/metabolismo , Lactose , Quitina/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo
5.
Environ Sci Pollut Res Int ; 29(24): 35518-35541, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35233673

RESUMO

Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.


Assuntos
Líquidos Iônicos , Farmácia , Líquidos Iônicos/química , Micro-Ondas , Preparações Farmacêuticas , Solventes/química
6.
Environ Sci Pollut Res Int ; 28(34): 46985-46998, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34269980

RESUMO

When faced with a plethora of issues, the possibility of one problem becoming the solution of another is a rare, yet beneficial scenario. This report explores the prospect of viewing the accumulation of organic waste matter in India as a potential calcium reservoir to relieve the issue of calcium deficiency in the population. Waste generation has seen gradual growth, and it has created a problem of waste disposal. A large segment of the generated waste primarily consists of food waste which contains significant amounts of nutrients. Food waste such as eggshells, waste from shellfish, bones, and fish scales contain good amounts of bioavailable calcium, and large quantities of this discarded bioavailable calcium remain unused. Global studies show India to have significantly lower levels of calcium intake than the global average, thus increasing the risk of calcium deficiency-related diseases. Furthermore, research shows that for over the past half of the century, the intake of dietary calcium has declined drastically throughout India. This has led to chronic calcium deficiency-related diseases throughout most of the Indian population. Hence, development of calcium supplements from calcium-rich waste material has the potential to not only reduce the strain on waste management, but also to provide the calcium-deficient population with a cheaper alternative to traditional supplements. Owing to the abundance and ease of separation, eggshells have been chosen as the focus of the review. This review highlights and compares their extraction methods of providing cheap calcium supplements while reducing the amount of eggshell waste.


Assuntos
Cálcio da Dieta , Eliminação de Resíduos , Animais , Cálcio , Suplementos Nutricionais , Casca de Ovo
7.
3 Biotech ; 9(7): 259, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31192084

RESUMO

In this research, optimization of the production medium to enhance tannase production by Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor was studied. Amount of substrate Triphala, moisture content, aeration rate, and fermentation period was chosen for optimization study. During one variable at a time optimization, the highest tannase activity of 0.226 U/gds was shown with Triphala as a substrate at the fermentation period of 32 h. Furthermore, the optimum conditions predicted by response surface methodology (RSM) and genetic algorithm (GA) were found to be 11.532 g of substrate Triphala, 47.071% of the moisture content, and 1.188 L/min of an aeration rate with uppermost tannase activity of 0.262 U/gds. In addition, the single hidden layer feedforward neural network (SLFNN) and the radial basis function neural network (RBFNN) of an artificial neural network (ANN) were adopted to compare the prediction performances of the RSM and GA. It revealed that the ANN models (SLFNN, R 2 = 0.9930; and RBFNN, R 2 = 0.9949) were better predictors than the RSM (R 2 = 0.9864). Finally, the validation experiment exhibited 0.265 U/gds of tannase activity at the optimized conditions, which is an 11-fold increase compared to unoptimized media in shake flask.

8.
3 Biotech ; 7(5): 275, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28794930

RESUMO

Production of tannase from B. gottheilii M2S2 was studied under solid-state fermentation with an optimized medium consisting of polyurethane foam matrix of dimension 40 × 40 × 5 mm, impregnated with a liquid medium comprising (w/v): 4% tannic acid; 2% NH4NO3; 0.1% KH2PO4; 0.2% MgSO4; 0.1% NaCl and 0.05% CaCl2·2H2O in distilled water, having a pH of 4.7. Maximum tannase production of 56.87 U/L was obtained after 32 h of fermentation at 32 °C in static condition. This study deals with the evaluation of unstructured kinetic models to understand the behavior of biomass, tannase production and tannic acid degradation, with the fermentation time. The growth rate of B. gottheilii M2S2 was 0.0703 h-1 at 32 h of fermentation. Product (Yx/s) and biomass yield (Yp/s) coefficients were estimated as 1.77 U/g of tannic acid and 0.276 g of biomass/g of tannic acid. All the kinetic constants µ, α, ß, m and n were evaluated using MATLAB 2015Rb program. The experimental and model-generated data showed a good correlation, which indicated that these models will describe tannase production and fermentation process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa