Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 496(7443): 106-9, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535599

RESUMO

Protein N-myristoylation is a 14-carbon fatty-acid modification that is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. The ability of the myristoyl group to facilitate dynamic protein-protein and protein-membrane interactions (known as the myristoyl switch) makes it an essential feature of many signal transduction systems. Thus pathogenic strategies that facilitate protein demyristoylation would markedly alter the signalling landscape of infected host cells. Here we describe an irreversible mechanism of protein demyristoylation catalysed by invasion plasmid antigen J (IpaJ), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity. A yeast genetic screen for IpaJ substrates identified ADP-ribosylation factor (ARF)1p and ARF2p, small molecular mass GTPases that regulate cargo transport through the Golgi apparatus. Mass spectrometry showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1, thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. We further demonstrate that IpaJ cleaves an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation and organelle function. Taken together, these findings show a previously unrecognized pathogenic mechanism for the site-specific elimination of N-myristoyl protein modification.


Assuntos
Antígenos de Bactérias/metabolismo , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Shigella flexneri/metabolismo , Fatores de Virulência/metabolismo , Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Animais , Asparagina/metabolismo , Autofagia , Biocatálise , Cisteína Proteases/metabolismo , Disenteria Bacilar , Feminino , Glicina/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Células HEK293 , Células HeLa , Humanos , Listeria monocytogenes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fagossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Shigella flexneri/enzimologia , Transdução de Sinais , Especificidade por Substrato , Virulência
2.
Traffic ; 16(12): 1270-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26420131

RESUMO

Shiga toxin-producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A-subunits block protein synthesis, while the B-subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B-subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B-subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome-to-Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface-exposed loop in STx2B (ß4-ß5 loop) is required for its endosome-to-Golgi trafficking. We previously demonstrated that residues in the corresponding ß4-ß5 loop of STx1B are required for interaction with GPP130, the STx1B-specific endosomal receptor, and for endosome-to-Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.


Assuntos
Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Motivos de Aminoácidos , Sequência Consenso , Sequência Conservada , Endossomos/metabolismo , Evolução Molecular , Galactosiltransferases/genética , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Cinética , Ligação Proteica , Subunidades Proteicas , Transporte Proteico , Toxina Shiga I/química , Toxina Shiga I/genética , Toxina Shiga II/química , Toxina Shiga II/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Nature ; 469(7328): 107-11, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21170023

RESUMO

The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Biocatálise , Escherichia coli O157/química , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Fatores de Ribosilação do ADP/química , Regulação Alostérica , Animais , Transporte Biológico , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Complexo de Golgi/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Membranas Intracelulares/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Desdobramento de Proteína , Ratos , Técnicas do Sistema de Duplo-Híbrido , Quinases Ativadas por p21/química
4.
Toxins (Basel) ; 13(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203879

RESUMO

Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.


Assuntos
Antineoplásicos Hormonais/farmacologia , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Tamoxifeno/farmacologia , Endossomos/efeitos dos fármacos , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos
5.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243048

RESUMO

Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin-producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin-producing E. coli infections.


Assuntos
Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Tamoxifeno/farmacologia , Autofagia , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais
6.
J Cell Biol ; 216(10): 3249-3262, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28883040

RESUMO

Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Membrana , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Toxina Shiga II/metabolismo , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Transporte Proteico/genética , Proteólise , Proteínas de Ligação a RNA/genética , Toxina Shiga I/genética , Toxina Shiga I/metabolismo , Toxina Shiga II/genética
7.
Cell Rep ; 6(5): 878-91, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24582959

RESUMO

Bidirectional vesicular transport between the endoplasmic reticulum (ER) and Golgi is mediated largely by ARF and Rab GTPases, which orchestrate vesicle fission and fusion, respectively. How their activities are coordinated in order to define the successive steps of the secretory pathway and preserve traffic directionality is not well understood in part due to the scarcity of molecular tools that simultaneously target ARF and Rab signaling. Here, we take advantage of the unique scaffolding properties of E. coli secreted protein G (EspG) to describe the critical role of ARF1/Rab1 spatiotemporal coordination in vesicular transport at the ER-Golgi intermediate compartment. Structural modeling and cellular studies show that EspG induces bidirectional traffic arrest by tethering vesicles through select ARF1-GTP/effector complexes and local inactivation of Rab1. The mechanistic insights presented here establish the effectiveness of a small bacterial catalytic scaffold for studying complex processes and reveal an alternative mechanism of immune regulation by an important human pathogen.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Retículo Endoplasmático/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexo de Golgi/enzimologia , Células HeLa , Humanos , Lipossomos/metabolismo , Microscopia Eletrônica , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transfecção , Proteínas rab1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rab1 de Ligação ao GTP/genética
8.
Small GTPases ; 2(4): 217-221, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22145094

RESUMO

Small Rho GTPases regulate a diverse range of cellular behavior within a cell. Their ability to function as molecular switches in response to a bound nucleotide state allows them to regulate multiple dynamic processes, including cytoskeleton organization and cellular adhesion. Because the activation of downstream Rho GTPase signaling pathways relies on conserved structural features of target effector proteins (i.e., CRIB domain), these pathways are particularly vulnerable to microbial pathogenic attack. Here, we discuss new findings for how the bacterial virulence factor EspG from EHEC O157:H7 exploits a CRIB-independent activation mechanism of the Rho GTPase effector PAK. We also compare this mechanism to that of EHEC EspFU, a bacterial virulence factor that directly activates N-WASP. While both virulence factors break the inhibitory interaction between the autoinhibitory and activity-bearing domains of PAK or WASP, the underlying mechanics are very distinct from endogenous Cdc42/Rac GTPase regulation. The ability of bacterial proteins to identify novel regulatory principles of host signaling enzymes highlights the multi-level nature of protein activation, and makes them effective tools to study mammalian Rho GTPase signaling pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa