Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Part Fibre Toxicol ; 16(1): 29, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288843

RESUMO

BACKGROUND: Industrially produced quantities of TiO2 nanoparticles are steadily rising, leading to an increasing risk of inhalation exposure for both professionals and consumers. Particle inhalation can result in inflammatory and allergic responses, and there are concerns about other negative health effects from either acute or chronic low-dose exposure. RESULTS: To study the fate of inhaled TiO2-NP, adult rats were exposed to 2-h intra-tracheal inhalations of 48V-radiolabeled, 20 nm TiO2-NP aerosols (deposited NP-mass 1.4 ± 0.5 µg). At five time points (1 h, 4 h, 24 h, 7d, 28d) post-exposure, a complete balance of the [48V]TiO2-NP fate was quantified in organs, tissues, carcass, lavage and body fluids, including excretions. After fast mucociliary airway clearance (fractional range 0.16-0.31), long-term macrophage-mediated clearance (LT-MC) from the alveolar region is 2.6-fold higher after 28d (integral fraction 0.40 ± 0.04) than translocation across the air-blood-barrier (integral fraction 0.15 ± 0.01). A high NP fraction remains in the alveoli (0.44 ± 0.05 after 28d), half of these on the alveolar epithelium and half in interstitial spaces. There is clearance from both retention sites at fractional rates (0.02-0.03 d- 1) by LT-MC. Prior to LT-MC, [48V]TiO2-NP are re-entrained to the epithelium as reported earlier for 20 nm inhaled gold-NP (AuNP) and iridium-NP (IrNP). CONCLUSION: Comparing the 28-day biokinetics patterns of three different inhaled NP materials TiO2-NP, AuNP and IrNP, the long-term kinetics of interstitial relocation and subsequent re-entrainment onto the lung-epithelium is similar for AuNP and Ir-NP but slower than for TiO2-NP. We discuss mechanisms and pathways of NP relocation and re-entrainment versus translocation. Additionally, after 28 days the integral translocated fractions of TiO2-NP and IrNP across the air-blood-barrier (ABB) are similar and become 0.15 while the translocated AuNP fraction is only 0.04. While NP dissolution proved negligible, translocated TiO2-NP and IrNP are predominantly excreted in urine (~ 0.1) while the urinary AuNP excretion amounts to a fraction of only 0.01. Urinary AuNP excretion is below 0.0001 during the first week but rises tenfold thereafter suggesting delayed disagglomeration. Of note, all three NP dissolve minimally, since no ionic radio-label release was detectable. These biokinetics data of inhaled, same-sized NP suggest significant time-dependent differences of the ABB translocation and subsequent fate in the organism.


Assuntos
Exposição por Inalação/análise , Pulmão/metabolismo , Nanopartículas/química , Titânio/farmacocinética , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Mucosa Respiratória/metabolismo , Fatores de Tempo , Distribuição Tecidual , Titânio/química
2.
Proc Natl Acad Sci U S A ; 109(13): 5092-7, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411799

RESUMO

The lung surface is an ideal pathway to the bloodstream for nanoparticle-based drug delivery. Thus far, research has focused on the lungs of adults, and little is known about nanoparticle behavior in the immature lungs of infants. Here, using nonlinear dynamical systems analysis and in vivo experimentation in developing animals, we show that nanoparticle deposition in postnatally developing lungs peaks at the end of bulk alveolation. This finding suggests a unique paradigm, consistent with the emerging theory that as alveoli form through secondary septation, alveolar flow becomes chaotic and chaotic mixing kicks in, significantly enhancing particle deposition. This finding has significant implications for the application of nanoparticle-based inhalation therapeutics in young children with immature lungs from birth to 2 y of age.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Nanopartículas/administração & dosagem , Administração por Inalação , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Simulação por Computador , Humanos , Lactente , Pulmão/anatomia & histologia , Pulmão/crescimento & desenvolvimento , Tamanho da Partícula , Ratos , Ratos Wistar , Respiração , Volume de Ventilação Pulmonar/fisiologia
3.
Acc Chem Res ; 46(3): 714-22, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22980029

RESUMO

Researchers need to study the biokinetics of inhaled biopersistent nano- and micrometer-sized particles (NPs and µPs) to assess their toxicity and to develop an understanding of their potential risks. When particles are inhaled, they do not necessarily remain at their sites of deposition in the respiratory tract. Instead they can undergo numerous transport processes within the various tissues of the lungs, including clearance from the lungs. In this context, we would like to understand how the biokinetic studies performed in animals can be extrapolated to humans. Interestingly, the particle retention is much shorter in rodent lungs and declines much faster than it does in human, simian, and canine lungs. The predominant long-term clearance pathway for both NPs and µPs in humans and other animal species is macrophage-mediated particle transport from the peripheral lungs toward ciliated airways and the larynx. However, the transport rate is 10 times higher in rodents than in other species. In addition to particle clearance out of the lung, we also observe particle redistribution from the epithelium toward and within the interstitium and lymph nodes of the lung and particle translocation to blood circulation leading to subsequent accumulation in secondary organs. While µPs have limited access to interstitial spaces in the rodent lungs, NPs rapidly relocate in the epithelium and the underlying interstitium. By contrast, indirect evidence shows that both NPs and µPs are relocated into the epithelium and interstitial spaces of the human, simian, and canine lungs. Only NPs translocate into the circulatory system and subsequently accumulate in the secondary organs and tissues of the body. Translocated NP fractions are rather low, but they depend strongly on the physicochemical properties of the NP and their surface properties. Growing evidence indicates that the binding and conjugation of proteins to NPs play an essential role in translocation across cellular membranes and organ barriers. In summary, particle biokinetics result from a multitude of highly dynamic processes, which depend not only on physicochemical properties of the particles but also on a multitude of cellular and molecular responses and interactions. Given the rather small accumulation in secondary organs after acute inhalation exposures, it appears likely that adverse effects caused by NPs accumulated in secondary organs may only occur after chronic exposure over extended time periods. Therefore adverse health effects in secondary organs such as the cardiovascular system that are associated with chronic exposure of ambient urban air pollution are less likely to result from particle translocation. Instead, chronic particle inhalation could trigger or modulate the autonomous nervous system or the release of soluble mediators into circulation leading to adverse health effects.


Assuntos
Exposição por Inalação , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Humanos , Cinética , Camundongos , Modelos Biológicos , Tamanho da Partícula
4.
Part Fibre Toxicol ; 11: 33, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25928666

RESUMO

BACKGROUND: There is evidence that nanoparticles (NP) cross epithelial and endothelial body barriers. We hypothesized that gold (Au) NP, once in the blood circulation of pregnant rats, will cross the placental barrier during pregnancy size-dependently and accumulate in the fetal organism by 1. transcellular transport across the hemochorial placenta, 2. transcellular transport across amniotic membranes 3. transport through ~20 nm wide transtrophoblastic channels in a size dependent manner. The three AuNP sizes used to test this hypothesis are either well below, or of similar size or well above the diameters of the transtrophoblastic channels. METHODS: We intravenously injected monodisperse, negatively charged, radio-labelled 1.4 nm, 18 nm and 80 nm ¹98AuNP at a mass dose of 5, 3 and 27 µg/rat, respectively, into pregnant rats on day 18 of gestation and in non-pregnant control rats and studied the biodistribution in a quantitative manner based on the radio-analysis of the stably labelled ¹98AuNP after 24 hours. RESULTS: We observed significant biokinetic differences between pregnant and non-pregnant rats. AuNP fractions in the uterus of pregnant rats were at least one order of magnitude higher for each particle size roughly proportional to the enlarged size and weight of the pregnant uterus. All three sizes of ¹98AuNP were found in the placentas and amniotic fluids with 1.4 nm AuNP fractions being two orders of magnitude higher than those of the larger AuNP on a mass base. In the fetuses, only fractions of 0.0006 (30 ng) and 0.00004 (0.1 ng) of 1.4 nm and 18 nm AuNP, respectively, were detected, but no 80 nm AuNP (<0.000004 (<0.1 ng)). These data show that no AuNP entered the fetuses from amniotic fluids within 24 hours but indicate that AuNP translocation occurs across the placental tissues either through transtrophoblastic channels and/or via transcellular processes. CONCLUSION: Our data suggest that the translocation of AuNP from maternal blood into the fetus is NP-size dependent which is due to mechanisms involving (1) transport through transtrophoblastic channels - also present in the human placenta - and/or (2) endocytotic and diffusive processes across the placental barrier.


Assuntos
Feto/química , Ouro/toxicidade , Exposição Materna , Troca Materno-Fetal , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Líquido Amniótico/química , Animais , Relação Dose-Resposta a Droga , Membranas Extraembrionárias/metabolismo , Feminino , Feto/metabolismo , Ouro/administração & dosagem , Ouro/análise , Ouro/química , Radioisótopos de Ouro , Injeções Intravenosas , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Tamanho da Partícula , Placenta/metabolismo , Gravidez , Distribuição Aleatória , Ratos Endogâmicos WKY , Distribuição Tecidual , Toxicocinética , Útero/química , Útero/metabolismo
5.
Part Fibre Toxicol ; 11: 19, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24758489

RESUMO

BACKGROUND: Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS: Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS: Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS: Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.


Assuntos
Poluentes Atmosféricos/farmacocinética , Poluentes Atmosféricos/toxicidade , Fibrose Cística/patologia , Nanopartículas/toxicidade , Poluição do Ar , Animais , Líquido da Lavagem Broncoalveolar , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Exposição por Inalação , Irídio/farmacocinética , Irídio/toxicidade , Radioisótopos de Irídio , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Pneumonia/induzido quimicamente , Pneumonia/patologia , Testes de Função Respiratória , Titânio/toxicidade
6.
Crit Rev Toxicol ; 43(1): 1-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23126553

RESUMO

PARTICLE_RISK was one of the first multidisciplinary projects funded by the European Commission's Framework Programme that was responsible for evaluating the implications of nanomaterial (NM) exposure on human health. This project was the basis for this review which identifies the challenges that exist within the assessment of NM risk. We have retrospectively reflected on the findings of completed nanotoxicology studies to consider what progress and advances have been made within the risk assessment of NMs, as well as discussing the direction that nanotoxicology research is taking and identifying the limitations and failings of existing research. We have reflected on what commonly encountered challenges exist and explored how these issues may be resolved. In particular, the following is discussed (i) NM selection (ii) NM physico-chemical characterisation; (iii) NM dispersion; (iv) selection of relevant doses and concentrations; (v) identification of relevant models, target sites and endpoints; (vi) development of alternatives to animal testing; and (vii) NM risk assessment. These knowledge gaps are relatively well recognised by the scientific community and recommendations as to how they may be overcome in the future are provided. It is hoped that this will help develop better defined hypothesis driven research in the future that will enable comprehensive risk assessments to be conducted for NMs. Importantly, the nanotoxicology community has responded and adapted to advances in knowledge over recent years to improve the approaches used to assess NM hazard, exposure and risk. It is vital to learn from existing information provided by ongoing or completed studies to avoid unnecessary duplication of effort, and to offer guidance on aspects of the experimental design that should be carefully considered prior to the start of a new study.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/tendências , Toxicologia/métodos , Animais , Fenômenos Químicos , Humanos , Modelos Animais , Nanoestruturas/análise , Nanotecnologia/métodos , Medição de Risco , Testes de Toxicidade , Toxicologia/tendências
7.
Nanotechnology ; 24(26): 265103, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23735821

RESUMO

When nanoparticles (NP) enter the body they come into contact with body fluids containing proteins which can adsorb to their surface. These proteins may influence the NP interactions with the biological vicinity, eventually determining their biological fate inside the body. Adsorption of the most abundantly binding proteins was studied after an in vitro 24 hr incubation of monodisperse, negatively charged 5, 15 and 80 nm gold spheres (AuNP) in mouse serum by a two-step analysis: proteomic protein identification and quantitative protein biochemistry. The adsorbed proteins were separated from non-adsorbed proteins by centrifugation and gel electrophoresis and identified using a MALDI-TOF-MS-Proteomics-Analyzer. Quantitative analysis of proteins in gel bands by protein densitometry, required the focus on predominantly binding serum proteins. Numerous proteins adsorbed to the AuNP depending on their size, e.g., apolipoproteins or complement C3. The qualitative and quantitative amount of adsorbed proteins differed between 5, 15 and 80 nm AuNP. Band intensities of adsorbed proteins decreased with increasing AuNP sizes based not only on their mass but also on their surface area. Summarizing, the AuNP surface is covered with serum proteins containing transport and immune related proteins among others. Hence, protein binding depends on the size, surface area and curvature of the AuNP.


Assuntos
Proteínas Sanguíneas/análise , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Animais , Proteínas Sanguíneas/química , Hidrodinâmica , Espectrometria de Massas , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Ligação Proteica , Eletricidade Estática
8.
Inhal Toxicol ; 23(8): 468-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21689008

RESUMO

CONTEXT: Once inhaled, nanoparticles (NP) deposit on the lung surface and have first contact with the epithelial lung lining fluid (ELF) rich in proteins, which may bind to NP. OBJECTIVE: In this study, we investigate the parameters that influence the binding between NP and proteins. MATERIALS AND METHODS: We used the proteins albumin, transferrin (TF), and apolipoprotein A-1 (all known as proteins from ELF) and different NP (polystyrene NP with negative, positive, and neutral surface coatings, Printex G and Printex 90) as models. RESULTS: In all cases, a linear correlation of the added NP amount and the amount of bound proteins was found and was described quantitatively by binding indices. Bovine serum albumin (BSA), TF, and apo A-1 were bound to the largest extent to hydrophobic NP, which shows the extraordinary importance of the NP's surface properties. DISCUSSION: The binding index indicates the relevance of primary particle size and surface properties, including hydrophobicity. CONCLUSION: Size and surface modifications of NP determine their protein binding. Our results suggest that the formation of conjugates of BSA, TF, and Apo A-1 with NP may play an important role in their translocation across the air-blood-barrier and subsequent biokinetics.


Assuntos
Proteínas Sanguíneas/metabolismo , Nanopartículas , Poliestirenos/metabolismo , Fuligem/metabolismo , Animais , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Proteínas Sanguíneas/química , Líquido da Lavagem Broncoalveolar/química , Bovinos , Nanopartículas/química , Poliestirenos/química , Ligação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Fuligem/química , Transferrina/química , Transferrina/metabolismo
9.
Toxicol Appl Pharmacol ; 242(1): 66-78, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19799923

RESUMO

Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged "live" during particle exposure or after exposure within fixed cells. Comparisons between the uptake of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.


Assuntos
Hepatócitos/metabolismo , Poliestirenos/farmacocinética , Animais , Canalículos Biliares/metabolismo , Linhagem Celular , Separação Celular , Endossomos/metabolismo , Corantes Fluorescentes , Ouro , Humanos , Mitocôndrias Hepáticas/metabolismo , Nanopartículas , Tamanho da Partícula , Poliestirenos/metabolismo , Ratos , Ratos Sprague-Dawley
10.
J Appl Physiol (1985) ; 107(3): 859-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19556455

RESUMO

Recently, we found that the translocation of inhaled nanoparticles from the air space to secondary organs is age dependent and substantially greater in neonates than in adults (J Respir Crit Care Med 177: A48, 2008). One reason for this difference might be age-dependent differences in alveolar barrier integrity. Because the neonate lung is undergoing morphogenetic and fluid balance changes, we hypothesize that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. On the basis of these hypotheses, we predict that the postnatally developing lung is also more likely to allow the translocation of some materials from the air space to the lymphatic lumens. To test this idea, we intratracheally instilled methyl methacrylate into immature and adult lungs and compared lymphatic filling between these two age groups. Scanning electron microscopy of the resultant corrosion casts revealed peribronchial saccular and conduit lymphatic architecture. Deep pulmonary lymphatic casts were present on the majority (58.5%) of airways in immature lungs, but lymphatic casting in adult lungs, as anticipated, was much more infrequent (21.6%). Thus the neonate lung appears to be more susceptible than the adult lung to the passage of instilled methyl methacrylate from the air space into the lymphatics. We speculate that this could imply greater probability of translocation of other materials, such as nanoparticles, from the immature lung as well.


Assuntos
Animais Recém-Nascidos/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/fisiologia , Envelhecimento/fisiologia , Animais , Tecido Conjuntivo/fisiologia , Feminino , Pulmão/ultraestrutura , Sistema Linfático/ultraestrutura , Masculino , Metilmetacrilato , Microscopia Eletrônica de Varredura , Nanopartículas , Ratos , Ratos Wistar , Mecânica Respiratória/fisiologia
11.
Part Fibre Toxicol ; 6: 34, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20028532

RESUMO

BACKGROUND: Ambient particulate matter (PM)-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of PM-induced inflammation by leached off metals, we investigated intracellular solubility of radio-labeled iron oxide ((59)Fe(2)O(3)) particles of 0.5 and 1.5 mum geometric mean diameter. Fe(2)O(3 )particles were examined for the induction of the release of interleukin 6 (IL-6) as pro-inflammatory and prostaglandin E(2 )(PGE(2)) as anti-inflammatory markers in cultured alveolar macrophages (AM) from Wistar Kyoto (WKY) rats. In addition, we exposed male WKY rats to monodispersed Fe(2)O(3 )particles by intratracheal instillation (1.3 or 4.0 mg/kg body weight) to examine in vivo inflammation. RESULTS: Particles of both sizes are insoluble extracellularly in the media but moderately soluble in AM with an intracellular dissolution rate of 0.0037 +/- 0.0014 d(-1 )for 0.5 mum and 0.0016 +/- 0.0012 d(-1 )for 1.5 mum (59)Fe(2)O(3 )particles. AM exposed in vitro to 1.5 mum particles (10 mug/mL) for 24 h increased IL-6 release (1.8-fold; p < 0.05) and also PGE(2 )synthesis (1.9-fold; p < 0.01). By contrast, 0.5 mum particles did not enhance IL-6 release but strongly increased PGE(2 )synthesis (2.5-fold, p < 0.005). Inhibition of PGE(2 )synthesis by indomethacin caused a pro-inflammatory phenotype as noted by increased IL-6 release from AM exposed to 0.5 mum particles (up to 3-fold; p < 0.005). In the rat lungs, 1.5 but not 0.5 mum particles (4.0 mg/kg) induced neutrophil influx and increased vascular permeability. CONCLUSIONS: Fe(2)O(3 )particle-induced neutrophilic inflammatory response in vivo and pro-inflammatory cytokine release in vitro might be modulated by intracellular soluble iron via PGE(2 )synthesis. The suppressive effect of intracellular released soluble iron on particle-induced inflammation has implications on how ambient PM-associated but soluble metals influence pulmonary toxicity of ambient PM.

12.
Inhal Toxicol ; 21 Suppl 1: 55-60, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19558234

RESUMO

Currently, translocation of inhaled insoluble nanoparticles (NP) across membranes like the air-blood barrier into secondary target organs (STOs) is debated. Of key interest are the involved biological mechanisms and NP parameters that determine the efficiency of translocation. We performed NP inhalation studies with rats to derive quantitative biodistribution data on the translocation of NP from lungs to blood circulation and STOs. The inhaled NP were chain aggregates (and agglomerates) of either iridium or carbon, with primary particle sizes of 2-4 nm (Ir) and 5-10 nm (C) and aggregate sizes (mean mobility diameters) between 20 and 80 nm. The carbon aggregates contained a small fraction ( < 1%) of Ir primary particles. The insoluble aggregates were radiolabeled with (192)Ir. During 1 h of inhalation, rats were intubated and ventilated to avoid extrathoracic NP deposition and to optimize deep lung NP deposition. After 24 h, (192)Ir fractions in the range between 0.001 and 0.01 were found in liver, spleen, kidneys, heart, and brain, and an even higher fraction (between 0.01 and 0.05) in the remaining carcass consisting of soft tissue and bone. The fractions of (192)Ir carried with the carbon NP retained in STOs, the skeleton, and soft tissue were significantly lower than with NP made from pure Ir. Furthermore, there was significantly less translocation and accumulation with 80-nm than with 20-nm NP aggregates of Ir. These studies show that both NP characteristics--the material and the size of the chain-type aggregates--determine translocation and accumulation in STOs, skeleton, and soft tissue.


Assuntos
Barreira Alveolocapilar/metabolismo , Carbono/farmacocinética , Exposição por Inalação , Irídio/farmacocinética , Nanopartículas , Aerossóis , Animais , Carbono/sangue , Carbono/toxicidade , Intubação Intratraqueal , Irídio/sangue , Irídio/toxicidade , Pulmão/metabolismo , Masculino , Nanopartículas/toxicidade , Tamanho da Partícula , Permeabilidade , Ratos , Ratos Endogâmicos WKY , Distribuição Tecidual
13.
Inhal Toxicol ; 21 Suppl 1: 92-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19558239

RESUMO

Since the mid-1990 s, the number of studies linking air pollutants to preterm and low birth weight, as well as to cardiac birth defects, has grown steadily each year. The critical period in the development of mouse embryos begins with the commencement of gastrulation at day 7.5 of gestation. Our aim is to examine the role of particles size and surface modification in particle translocation during this early embryonic development. Fluorescent polystyrene particles (PS) were employed because they offer an efficient and safe tracking method. Pregnant female mice were sacrificed at 7.5 days of gestation. After cutting open the deciduas, the parietal endoderm was carefully separated and removed. Different sizes of amine- and carboxyl-modified PS beads were injected via the extraembryonic tissue. The embryos were incubated for 12 h, and were investigated under fluorescent microscopy, confocal microscopy, and mesoscopic fluorescence tomography. The results show that 20-nm carboxylic PS distribute in the embryonic and extraembryonic germ layers of ectoderm, mesoderm, and endoderm. Moreover, when the particles are bigger than 100 nm, PS accumulate in extraembryonic tissue, but nevertheless 200-nm amine-modified particles can pass into the embryos. Interestingly, a growth inhibition was observed in the embryos containing nanoparticles. Finally, the stronger translocation effect is associated with amine-modified PS beads (200 nm) instead of the smaller (20 nm, 100 nm) carboxyl ones.


Assuntos
Poluentes Atmosféricos/química , Aminas/química , Ácidos Carboxílicos/química , Embrião de Mamíferos/metabolismo , Nanopartículas/química , Poliestirenos/química , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/toxicidade , Aminas/metabolismo , Aminas/toxicidade , Animais , Transporte Biológico , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/toxicidade , Técnicas de Cultura Embrionária , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Idade Gestacional , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia de Fluorescência , Nanopartículas/toxicidade , Tamanho da Partícula , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Gravidez , Propriedades de Superfície , Tomografia
14.
Am J Respir Cell Mol Biol ; 38(3): 371-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17947511

RESUMO

The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.


Assuntos
Exposição por Inalação , Macrófagos Alveolares/metabolismo , Titânio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/citologia , Macrófagos Alveolares/ultraestrutura , Masculino , Taxa de Depuração Metabólica , Microesferas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Fatores de Tempo , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Part Fibre Toxicol ; 5: 19, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19055790

RESUMO

BACKGROUND: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 mug.m-3), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY). METHODS: Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF). RESULTS: Increased BP and heart rate (HR) by about 5% with a lag of 1-3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors - except hemeoxygenase-1 - were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma. CONCLUSION: Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction, stimulation of blood coagulation factors, and inhibition of fibrinolysis. Thus, UfCPs may cause cardiovascular and pulmonary impairment, in the absence of detectable pulmonary inflammation, in individuals suffering from preexisting cardiovascular diseases.

16.
Inhal Toxicol ; 20(6): 585-93, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18444011

RESUMO

Epidemiological studies have shown an association between ambient particle inhalation and adverse respiratory heath effects. Inhalation of ultrafine particles (UFP, diameter <100 nm) has been suggested to contribute to exacerbation of allergic airway inflammation. Here we analyze the potential effects of allergen sensitization and challenge on total and regional deposition of UFP in the lung. Ovalbumin (OVA)-sensitized and nonsensitized mice were exposed for 1 h to ultrafine iridium particles radiolabeled with (192)Ir (UF-Ir) (0.2 mg m(-3)) at 2 different time points either before or after allergen (OVA) challenge. Additional sensitized and nonsensitized mice were exposed to UF-Ir without allergen challenge. Lung total and regional UF-Ir deposition were calculated according to the distribution of radioactivity in the body and in the excreta during 3 days following UF-Ir inhalation. OVA-sensitized mice showed a 21% relative increase of total UF-Ir deposited fraction compared to nonsensitized mice. When UF-Ir inhalation was performed after allergen challenge, no difference in total UF-Ir deposited fraction between sensitized and nonsensitized mice was detectable. Furthermore, no differences in extrathoracic deposition or in regional particle deposition were detected between all experimental groups. This study indicates that allergen sensitization alone can affect UFP deposition in the lungs. Whether higher UFP deposition in sensitized individuals compared to nonsensitized individuals or whether other factors, like alterations in long-term clearance kinetics, contribute substantially to the susceptibility of allergic individuals to particle exposure has yet to be elucidated.


Assuntos
Hipersensibilidade , Pneumopatias/induzido quimicamente , Material Particulado/toxicidade , Administração por Inalação , Aerossóis , Alérgenos/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Pulmão/patologia , Pulmão/fisiopatologia , Pneumopatias/imunologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Tamanho da Partícula , Material Particulado/imunologia , Distribuição Aleatória , Testes de Função Respiratória
17.
Environ Health Perspect ; 115(5): 728-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17520060

RESUMO

BACKGROUND: There is ongoing discussion that inhaled nanoparticles (NPs, < 100 nm) may translocate from epithelial deposition sites of the lungs to systemic circulation. OBJECTIVES AND METHODS: We studied the disappearance of NPs from the epithelium by sequential lung retention and clearance and bronchoalveolar lavage (BAL) measurements in healthy adult Wistar Kyoto (WKY) rats at various times over 6 months after administration of a single 60- to 100-min intratracheal inhalation of iridium-192 ((192)Ir)-radiolabeled NPs. A complete (192)Ir balance of all organs, tissues, excretion, remaining carcass, and BAL was performed at each time point. RESULTS: Directly after inhalation we found free NPs in the BAL; later, NPs were predominantly associated with alveolar macropages (AMs). After 3 weeks, lavageable NP fractions decreased to 0.06 of the actual NP lung burden. This is in stark contrast to the AM-associated fraction of micron-sized particles reported in the literature. These particles remained constant at about 0.8 throughout a 6-month period. Three weeks after inhalation, 80% of the retained Ir NPs was translocated into epithelium and interstitium. CONCLUSION: There is a strong size-selective difference in particle immobilization. Furthermore, AM-mediated NP transport to the larynx originates not only from the NP fraction retained on the epithelium but also from NPs being reentrained from the interstitium to the luminal side of epithelium. We conclude that NPs are much less phagocytized by AMs than large particles but are effectively removed from the lung surface into the interstitium. Even from these interstitial sites, they undergo AM-mediated long-term NP clearance to the larynx.


Assuntos
Líquido Extracelular/química , Nanopartículas/análise , Alvéolos Pulmonares/química , Mucosa Respiratória/química , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Masculino , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY
18.
Nanotoxicology ; 11(4): 434-442, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290717

RESUMO

Submicrometer TiO2 particles, including nanoparticulate fractions, are used in an increasing variety of consumer products, as food additives and also drug delivery applications are envisaged. Beyond exposure of occupational groups, this entails an exposure risk to the public. However, nanoparticle translocation from the organ of intake and potential accumulation in secondary organs are poorly understood and in many investigations excessive doses are applied. The present study investigates the biokinetics and clearance of a low single dose (typically 40-400 µg/kg BW) of 48V-radiolabeled, pure TiO2 anatase nanoparticles ([48V]TiO2NP) with a median aggregate/agglomerate size of 70 nm in aqueous suspension after intravenous (IV) injection into female Wistar rats. Biokinetics and clearance were followed from one-hour to 4-weeks. The use of radiolabeled nanoparticles allowed a quantitative [48V]TiO2NP balancing of all organs, tissues, carcass and excretions of each rat without having to account for chemical background levels possibly caused by dietary or environmental titanium exposure. Highest [48V]TiO2NP accumulations were found in liver (95.5%ID after one day), followed by spleen (2.5%), carcass (1%), skeleton (0.7%) and blood (0.4%). Detectable nanoparticle levels were found in all other organs. The [48V]TiO2NP content in blood decreased rapidly after 24 h while the distribution in other organs and tissues remained rather constant until day-28. The present biokinetics study is part 1 of a series of studies comparing biokinetics after three classical routes of intake (IV injection (part 1), ingestion (part 2), intratracheal instillation (part 3)) under identical laboratory conditions, in order to test the common hypothesis that IV-injection is a suitable predictor for the biokinetics fate of nanoparticles administered by different routes. This hypothesis is disproved by this series of studies.


Assuntos
Poluentes Ambientais/farmacocinética , Nanopartículas , Titânio/farmacocinética , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Feminino , Eliminação Hepatobiliar , Injeções Intravenosas , Taxa de Depuração Metabólica , Nanopartículas/administração & dosagem , Especificidade de Órgãos , Tamanho da Partícula , Radioisótopos , Ratos , Ratos Wistar , Fatores de Tempo , Distribuição Tecidual , Titânio/administração & dosagem , Titânio/sangue , Titânio/urina , Vanádio
19.
Nanotoxicology ; 11(4): 443-453, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290734

RESUMO

The biokinetics of a size-selected fraction (70 nm median size) of commercially available and 48V-radiolabeled [48V]TiO2 nanoparticles has been investigated in female Wistar-Kyoto rats at retention timepoints 1 h, 4 h, 24 h and 7 days after oral application of a single dose of an aqueous [48V]TiO2-nanoparticle suspension by intra-esophageal instillation. A completely balanced quantitative body clearance and biokinetics in all organs and tissues was obtained by applying typical [48V]TiO2-nanoparticle doses in the range of 30-80 µg•kg-1 bodyweight, making use of the high sensitivity of the radiotracer technique. The [48V]TiO2-nanoparticle content was corrected for nanoparticles in the residual blood retained in organs and tissue after exsanguination and for 48V-ions not bound to TiO2-nanoparticles. Beyond predominant fecal excretion about 0.6% of the administered dose passed the gastro-intestinal-barrier after one hour and about 0.05% were still distributed in the body after 7 days, with quantifiable [48V]TiO2-nanoparticle organ concentrations present in liver (0.09 ng•g-1), lungs (0.10 ng•g-1), kidneys (0.29 ng•g-1), brain (0.36 ng•g-1), spleen (0.45 ng•g-1), uterus (0.55 ng•g-1) and skeleton (0.98 ng•g-1). Since chronic, oral uptake of TiO2 particles (including a nano-fraction) by consumers has continuously increased in the past decades, the possibility of chronic accumulation of such biopersistent nanoparticles in secondary organs and the skeleton raises questions about the responsiveness of their defense capacities, and whether these could be leading to adverse health effects in the population at large. After normalizing the fractions of retained [48V]TiO2-nanoparticles to the fraction that passed the gastro-intestinal-barrier and reached systemic circulation, the biokinetics was compared to the biokinetics determined after IV-injection (Part 1). Since the biokinetics patterns differ largely, IV-injection is not an adequate surrogate for assessing the biokinetics after oral exposure to TiO2 nanoparticles.


Assuntos
Poluentes Ambientais/farmacocinética , Nanopartículas , Titânio/farmacocinética , Administração Oral , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Fezes/química , Feminino , Trato Gastrointestinal/metabolismo , Taxa de Depuração Metabólica , Nanopartículas/administração & dosagem , Tamanho da Partícula , Radioisótopos , Ratos , Ratos Endogâmicos WKY , Propriedades de Superfície , Fatores de Tempo , Distribuição Tecidual , Titânio/administração & dosagem , Titânio/sangue , Titânio/urina , Vanádio
20.
Nanotoxicology ; 11(4): 454-464, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28290735

RESUMO

The biokinetics of a size-selected fraction (70 nm median size) of commercially available and 48V-radiolabeled [48V]TiO2 nanoparticles has been investigated in healthy adult female Wistar-Kyoto rats at retention time-points of 1 h, 4 h, 24 h, 7 d and 28 d after intratracheal instillation of a single dose of an aqueous [48V]TiO2-nanoparticle suspension. A completely balanced quantitative biodistribution in all organs and tissues was obtained by applying typical [48V]TiO2-nanoparticle doses in the range of 40-240 µg·kg-1 bodyweight and making use of the high sensitivity of the radiotracer technique. The [48V]TiO2-nanoparticle content was corrected for residual blood retained in organs and tissues after exsanguination and for 48V-ions not bound to TiO2-nanoparticles. About 4% of the initial peripheral lung dose passed through the air-blood-barrier after 1 h and were retained mainly in the carcass (4%); 0.3% after 28 d. Highest organ fractions of [48V]TiO2-nanoparticles present in liver and kidneys remained constant (0.03%). [48V]TiO2-nanoparticles which entered across the gut epithelium following fast and long-term clearance from the lungs via larynx increased from 5 to 20% of all translocated/absorbed [48V]TiO2-nanoparticles. This contribution may account for 1/5 of the nanoparticle retention in some organs. After normalizing the fractions of retained [48V]TiO2-nanoparticles to the fraction that reached systemic circulation, the biodistribution was compared with the biodistributions determined after IV-injection (Part 1) and gavage (GAV) (Part 2). The biokinetics patterns after IT-instillation and GAV were similar but both were distinctly different from the pattern after intravenous injection disproving the latter to be a suitable surrogate of the former applications. Considering that chronic occupational inhalation of relatively biopersistent TiO2-particles (including nanoparticles) and accumulation in secondary organs may pose long-term health risks, this issue should be scrutinized more comprehensively.


Assuntos
Barreira Alveolocapilar/metabolismo , Poluentes Ambientais/farmacocinética , Nanopartículas , Titânio/farmacocinética , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Feminino , Exposição por Inalação , Taxa de Depuração Metabólica , Nanopartículas/administração & dosagem , Especificidade de Órgãos , Radioisótopos , Ratos , Ratos Endogâmicos WKY , Fatores de Tempo , Distribuição Tecidual , Titânio/administração & dosagem , Titânio/sangue , Titânio/urina , Vanádio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa