Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Nephrol ; 23(1): 162, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484519

RESUMO

BACKGROUND: The progression of chronic kidney disease (CKD) is associated with an increasing risk of cardiovascular morbidity and mortality due to elevated serum phosphate levels. Besides low phosphate diets and hemodialysis, oral phosphate binders are prescribed to treat hyperphosphatemia in CKD patients. This study reports on a processed clay mineral as a novel and efficient phosphate sorbent with comparable efficacy of a clinically approved phosphate binder. METHODS: 5/6 nephrectomized rats, which develop chronic renal failure (CRF), received a high phosphate and calcium diet supplemented with either a processed Montmorillonite-Illite clay mineral (pClM) or lanthanum carbonate (LaC) for 12 weeks. Levels of plasma uremic toxins, glomerular filtration rates and microalbuminuria were determined and the histomorphology of blood vessels and smooth muscle cells was analyzed. RESULTS: 5/6 nephrectomy induced an increase in plasma uremic toxins levels and progressive proteinuria. Treatment of CRF rats with pClM decreased observed vascular pathologies such as vascular fibrosis, especially in coronary vessels. The transition of vascular smooth muscle cells from a contractile to a secretory phenotype was delayed. Moreover, pClM administration resulted in decreased blood creatinine and urea levels, and increased glomerular filtration rates, reduced microalbuminuria and eventually the mortality rate in CRF rats. CONCLUSION: Our study reveals pClM as a potent phosphate binding agent with beneficial impacts on pathophysiological processes in an animal model of CKD. pClM effectively attenuates the progression of vascular damage and loss of renal function which are the most severe consequences of chronic renal failure.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Albuminúria/complicações , Animais , Argila , Feminino , Humanos , Falência Renal Crônica/complicações , Masculino , Minerais , Fosfatos , Ratos , Insuficiência Renal Crônica/complicações
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445403

RESUMO

Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.


Assuntos
Bactérias/classificação , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Microbiota/efeitos dos fármacos , Silicatos/administração & dosagem , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Fezes/microbiologia , Masculino , Camundongos Endogâmicos BALB C , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Índice de Gravidade de Doença , Silicatos/farmacologia , Proteínas de Junções Íntimas/metabolismo , Resultado do Tratamento
3.
Front Mol Neurosci ; 16: 1253801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928069

RESUMO

Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.

4.
Sci Rep ; 7(1): 5965, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729735

RESUMO

The unique dendritic architecture of a given neuronal subtype determines its synaptic connectivity and ability to integrate into functional neuronal networks. It is now clear that abnormal dendritic structure is associated with neuropsychiatric and neurodegenerative disorders. Currently, however, the nature of the extrinsic factors that limit dendritic growth and branching within predetermined boundaries in the mammalian brain is poorly understood. Here we identify the Wnt receptor Ryk as a novel negative regulator of dendritic arborisation. We demonstrate that loss of Ryk in mouse hippocampal and cortical neurons promotes excessive dendrite growth and branching in vitro. Conversely, overexpression of wildtype Ryk restricts these processes, confirming that Ryk acts to restrain dendrite arborisation. Furthermore, we identify a hitherto uncharacterized membrane proximal subdomain crucial for Ryk-mediated suppression of dendrite morphogenesis, suggesting that it may act through a novel signalling pathway to constrain dendrite complexity. We also demonstrate that Ryk performs a similar function in vivo as Ryk haploinsufficient postnatal animals exhibit excessive dendrite growth and branching in layer 2/3 pyramidal neurons of the somatosensory cortex. These findings reveal an essential role for Ryk in regulating dendrite complexity and raise the intriguing possibility that it may influence neural plasticity by modifying dendritic structure.


Assuntos
Dendritos/metabolismo , Mamíferos/metabolismo , Morfogênese , Neurogênese , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Wnt/metabolismo , Animais , Células Cultivadas , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Plasticidade Neuronal , Córtex Somatossensorial/metabolismo
5.
Cell Rep ; 20(2): 370-383, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700939

RESUMO

Denudation of the ependyma due to loss of cell adhesion mediated by cadherin-based adherens junctions is a common feature of perinatal hydrocephalus. Junctional stability depends on the interaction between cadherins and the actin cytoskeleton. However, the molecular mechanism responsible for recruiting the actin nucleation machinery to the ependymal junction is unknown. Here, we reveal that loss of the netrin/RGM receptor, Neogenin, leads to severe hydrocephalus. We show that Neogenin plays a critical role in actin nucleation in the ependyma by anchoring the WAVE regulatory complex (WRC) and Arp2/3 to the cadherin complex. Blocking Neogenin binding to the Cyfip1/Abi WRC subunit results in actin depolymerization, junctional collapse, and denudation of the postnatal ventricular zone. In the embryonic cortex, this leads to loss of radial progenitor adhesion, aberrant neuronal migration, and neuronal heterotopias. Therefore, Neogenin-WRC interactions play a fundamental role in ensuring the fidelity of the embryonic ventricular zone and maturing ependyma.


Assuntos
Junções Aderentes/metabolismo , Epêndima/metabolismo , Hidrocefalia/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Netrina/metabolismo , Gravidez
6.
Age (Dordr) ; 35(6): 2153-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23319363

RESUMO

Aging often restricts the capacity of the immune system. Endotoxemia is characterized by an immune response initiated by a group of pattern recognition receptors including the receptor for advanced glycation end products (RAGE). The aim of this study was to clarify to which extent RAGE and its signaling pathways such as the so called mitogen-activated protein kinase (MAPK) pathways can contribute to the perpetuation of inflammation in the aging organism. We used senescence-accelerated-prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice and studied them at the age of 2 and 6 months. Livers of SAMP8 mice had significantly higher malondialdehyde concentrations and a modest reduction of glyoxalase-I expression. Consequently, the abundance of highly modified advanced glycation end products was increased in the liver and plasma of these mice. After galactosamine/lipopolysaccharide-induced acute liver injury, significant activation of the MAPK cascade was observed in both mouse strains. Administration of an anti-RAGE antibody diminished p42/44-phosphorylation as well as tissue injury in SAMP8 mice, whereas the identical treatment in SAMR1 mice leads to a significant increase in p42/44-phosphorylation and intensified liver injury. This observation suggests that dependent on the senescence of the organism, anti-RAGE antibody can have differential effects on the progression of endotoxemic liver failure.


Assuntos
Envelhecimento/imunologia , Anticorpos Anti-Idiotípicos/metabolismo , Endotoxemia/complicações , Falência Hepática/metabolismo , Estresse Oxidativo , Receptores Imunológicos/imunologia , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/imunologia , Endotoxemia/metabolismo , Feminino , Produtos Finais de Glicação Avançada , Imunoglobulina G/imunologia , Falência Hepática/etiologia , Falência Hepática/imunologia , Camundongos , Camundongos Endogâmicos , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais
7.
Int J Clin Exp Pathol ; 6(10): 2021-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24133579

RESUMO

Since hyperglycemia aggravates acute pancreatitis and also activates the receptor for advanced glycation endproducts (RAGE) in other organs, we explored if RAGE is expressed in the pancreas and if its expression is regulated during acute pancreatitis and hyperglycemia. Acute pancreatitis was induced by cerulein in untreated and streptozotocin treated diabetic mice. Expression of RAGE was analyzed by Western blot and immunohistochemistry. To evaluate signal transduction the phosphorylation of ERK1/ERK2 was assessed by Western blot and the progression of acute pancreatitis was monitored by evaluation of lipase activity and the pancreas wet to dry weight ratio. RAGE is mainly expressed by acinar as well as interstitial cells in the pancreas. During acute pancreatitis infiltrating inflammatory cells also express RAGE. Using two distinct anti-RAGE antibodies six RAGE proteins with diverse molecular weight are detected in the pancreas, whereas just three distinct RAGE proteins are detected in the lung. Hyperglycemia, which aggravates acute pancreatitis, significantly reduces the production of two RAGE proteins in the inflamed pancreas.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Receptores Imunológicos/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Progressão da Doença , Hiperglicemia/patologia , Lipase/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Fosforilação , Receptor para Produtos Finais de Glicação Avançada
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa