Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(26): 14376-14380, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33876539

RESUMO

A four-coordinate cobalt-imido complex, (tBu mPNP)Co=NMes (tBu mPNP=modified PNP pincer ligand) has been synthesized from addition of 2,4,6-trimethylphenylazide (Mes-N3 ) to the corresponding dinitrogen complex. The solid-state structure determined by X-ray diffraction established a rare, idealized planar geometry with a Co=N bond distance of 1.716(2) Å. Magnetic measurements revealed an S=1 ground state with CAS-SCF calculations supporting radical character on the imide nitrogen. Thermolysis of the cobalt-imido compound induced selective insertion of the imido group into a Co-P bond and yielded a three-coordinate cobalt complex with a distorted T-shaped geometry. Transition state analysis conducted with DFT calculations established the thermodynamic stability of the P-N coupled product and provided insight into the exclusive selectivity.

2.
J Am Chem Soc ; 138(33): 10645-53, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27476954

RESUMO

A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes.

3.
J Am Chem Soc ; 136(34): 12099-107, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25066657

RESUMO

Addition of stoichiometric quantites of 1,2-diarylhydrazines to the bis(imino)pyridine vanadium dinitrogen complex, [{((iPr)BPDI)V(THF)}2(µ2-N2)] ((iPr)BPDI = 2,6-(2,6-iPr2-C6H3N═CPh)2C5H3N), resulted in N-N bond cleavage to yield the corresponding vanadium bis(amido) derivatives, ((iPr)BPDI)V(NHAr)2 (Ar = Ph, Tol). Spectroscopic, structural, and computational studies support an assignment as vanadium(III) complexes with chelate radical anions, [BPDI](•-). With excess 1,2-diarylhydrazine, formation of the bis(imino)pyridine vanadium imide amide compounds, ((iPr)BPDI)V(NHAr)NAr, were observed along with the corresponding aryldiazene and aniline. A DFT-computed N-H bond dissociation free energy of 69.2 kcal/mol was obtained for ((iPr)BPDI)V(NHPh)NPh, and interconversion between this compound and ((iPr)BPDI)V(NHPh)2 with (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO), 1,2-diphenylhydrazine, and xanthene experimentally bracketed this value between 67.1 and 73.3 kcal/mol. For ((iPr)BPDI)V(NHPh)2, the N-H BDFE was DFT-calculated to be 64.1 kcal/mol, consistent with experimental observations. Catalytic disproportionation of 1,2-diarylhydrazines promoted by ((iPr)BPDI)V(NHAr)NAr was observed, and crossover experiments established exchange of anilide (but not imido) ligands in the presence of free hydrazine. These studies demonstrate the promising role of redox-active active ligands in promoting N-N bond cleavage with concomitant N-H bond formation and how the electronic properties of the metal-ligand combination influence N-H bond dissocation free energies and related hydrogen atom transfer processes.

4.
J Am Chem Soc ; 136(11): 4133-6, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24588541

RESUMO

A family of pincer-ligated cobalt complexes has been synthesized and are active for the catalytic C-H borylation of heterocycles and arenes. The cobalt catalysts operate with high activity and under mild conditions and do not require excess borane reagents. Up to 5000 turnovers for methyl furan-2-carboxylate have been observed at ambient temperature with 0.02 mol % catalyst loadings. A catalytic cycle that relies on a cobalt(I)-(III) redox couple is proposed.

5.
J Am Chem Soc ; 136(25): 9211-24, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24897302

RESUMO

A family of cobalt chloride, methyl, acetylide and hydride complexes bearing both intact and modified tert-butyl substituted bis(phosphino)pyridine pincer ligands has been synthesized and structurally characterized and their electronic structures evaluated. Treatment of the unmodified compounds with the stable nitroxyl radical, TEMPO (2,2,6,6-tetramethylpiperidin-1-yloxidanyl) resulted in immediate H- atom abstraction from the benzylic position of the chelate yielding the corresponding modified pincer complexes, ((tBu)mPNP)CoX (X = H, CH3, Cl, CCPh). Thermolysis of the methyl and hydride derivatives, ((tBu)PNP)CoCH3 and ((tBu)PNP)CoH, at 110 °C also resulted in pincer modification by H atom loss while the chloride and acetylide derivatives proved inert. The relative ordering of benzylic C-H bond strengths was corroborated by H atom exchange experiments between appropriate intact and modified pincer complexes. The electronic structures of the modified compounds, ((tBu)mPNP)CoX were established by EPR spectroscopy and DFT computations and are best described as low spin Co(II) complexes with no evidence for ligand centered radicals. The electronic structures of the intact complexes, ((tBu)PNP)CoX were studied computationally and bond dissociation free energies of the benzylic C-H bonds were correlated to the identity of the X-type ligand on cobalt where pure σ donors such as hydride and methyl produce the weakest C-H bonds. Comparison to a rhodium congener highlights the impact of the energetically accessible one-electron redox couple of the first row metal ion in generating weak C-H bonds in remote positions of the supporting pincer ligand.

6.
Inorg Chem ; 53(18): 9463-5, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25171221

RESUMO

The addition of carbon dioxide to ((tBu)PNP)CoH [(tBu)PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine] resulted in rapid insertion into the Co-H bond to form the corresponding κ(1)-formate complex, which has been structurally characterized. Treatment of ((tBu)PNP)CoH with PhSiH3 resulted in oxidative addition to form trans-((tBu)PNP)CoH2(SiH2Ph), which undergoes rapid exchange with excess free silane. With 0.5 mol % ((tBu)PNP)CoH, the catalytic hydrosilylation of CO2 with PhSiH3 to a mixture of oligomers containing silyl formate, bis(silyl)acetyl, and silyl ether subunits has been observed.

7.
Angew Chem Int Ed Engl ; 53(35): 9189-92, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24652660

RESUMO

The zirconocene dinitrogen complex [{(η(5)-C5Me4H)2Zr}2(µ2,η(2),η(2)-N2)] was synthesized by photochemical reductive elimination from the corresponding zirconium bis(aryl) or aryl hydride complexes, providing a high-yielding, alkali metal-free route to strongly activated early-metal N2 complexes. Mechanistic studies support the intermediacy of zirconocene arene complexes that in the absence of sufficient dinitrogen promote C-H activation or undergo comproportion to formally Zr(III) complexes. When N2 is in excess arene displacement gives rise to strong dinitrogen activation.

8.
ACS Appl Mater Interfaces ; 16(11): 14288-14295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442210

RESUMO

Area-selective atomic layer deposition (AS-ALD) processes for TiO2 and TiON on SiN as the growth area vs SiO2 as the nongrowth area are demonstrated on patterns created by state-of-the-art 300 mm semiconductor wafer fabrication. The processes consist of an in situ CF4/N2 plasma etching step that has the dual role of removing the SiN native oxide and passivating the SiO2 surface with fluorinated species, thus rendering the latter surface less reactive toward titanium tetrachloride (TiCl4) precursor. Additionally, (dimethylamino)trimethylsilane was employed as a small molecule inhibitor (SMI) to further enhance the selectivity. Virtually perfect selectivity was obtained when combining the deposition process with intermittent CF4/N2 plasma-based back-etching steps, as demonstrated by scanning and transmission electron microscopy inspections. Application-compatible thicknesses of ∼8 and ∼5 nm were obtained for thermal ALD of TiO2 and plasma ALD of TiON.

9.
J Am Chem Soc ; 135(30): 11373-83, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23829435

RESUMO

The synthesis and characterization of a metastable, base-free isocyanato dihafnocene µ-nitrido complex from CO-induced dinitrogen cleavage is described. The open coordination site at hafnium suggested the possibility of functionalization of the nitrogen atom by cycloaddition and insertion chemistry. Addition of the strained, activated alkyne, cyclooctyne, resulted in N-C bond formation by cycloaddition. The alkyne product is kinetically unstable engaging the terminal hafnocene isocyanate and promoting deoxygenation and additional N-C bond formation resulting in a substituted cyanamide ligand. Group transfer between hafnium centers was observed upon treatment with Me3SiCl resulting in bridging carbodiimidyl ligands. Amidinato-type ligands, [NC(R)N](3-) were prepared by addition of either cyclohexyl or isobutyronitrile to the base free dihafnocene µ-nitrido complex, which also engages in additional N-C bond formation with the terminal isocyanate to form bridging ureate-type ligands. Heterocummulenes also proved reactive as exposure of the nitride complex to CO2 resulted in deoxygenation and N-C bond formation to form isocyanate ligands. With substituted isocyanates, cycloaddition to the dihafnocene µ-nitrido was observed forming ureate ligands, which upon thermolysis isomerize to bridging carbodiimides. Taken together, these results establish the base free dihafnocene µ-nitrido as a versatile platform to synthesize organic molecules from N2 and carbon monoxide.

10.
J Am Chem Soc ; 135(12): 4862-77, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23448301

RESUMO

The bis(imino)pyridine iron dinitrogen compound, ((iPr(TB))PDI)Fe(N2)2 ((iPr(TB))PDI = 2,6-(2,6-(i)Pr2-C6H3-N═C-(CH2)3)2(C5H1N)) is an effective precatalyst for the [2π + 2π] cycloaddition of diallyl amines as well as the hydrogenative cyclization of N-tosylated enynes and diynes. Addition of stoichiometric quantities of amino-substituted enyne and diyne substrates to ((iPr(TB))PDI)Fe(N2)2 resulted in isolation of catalytically competent bis(imino)pyridine iron metallacycle intermediates. A combination of magnetochemistry, X-ray diffraction, and Mössbauer spectroscopic and computational studies established S = 1 iron compounds that are best described as intermediate-spin iron(III) (SFe = 3/2) antiferromagnetically coupled to a chelate radical anion (SPDI = 1/2). Catalytically competent bis(imino)pyridine iron diene and metallacycles relevant to the [2π + 2π] cycloaddition were also isolated and structurally characterized. The combined magnetic, structural, spectroscopic, and computational data support an Fe(I)-Fe(III) catalytic cycle where the bis(imino)pyridine chelate remains in its one-electron reduced radical anion form. These studies revise a previous mechanistic proposal involving exclusively ferrous intermediates and highlight the importance of the redox-active bis(imino)pyridine chelate for enabling catalytic cyclization chemistry with iron.

11.
Inorg Chem ; 52(9): 5403-17, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594241

RESUMO

The electronic structure of the diamagnetic pyridine imine enamide cobalt dinitrogen complex, ((iPr)PIEA)CoN2 ((iPr)PIEA = 2-(2,6-(i)Pr2-C6H3N═CMe)-6-(2,6-(i)Pr2-C6H3NC═CH2)C5H3N), was determined and is best described as a low-spin cobalt(II) complex antiferromagnetically coupled to an imine radical anion. Addition of potential radical sources such as NO, PhSSPh, or Ph3Cl resulted in C-C coupling at the enamide positions to form bimetallic cobalt compounds. Treatment with the smaller halocarbon, PhCH2Cl, again induced C-C coupling to form a bimetallic bis(imino)pyridine cobalt chloride product but also yielded a monomeric cobalt chloride product where the benzyl group added to the enamide carbon. Similar cooperative metal-ligand addition was observed upon treatment of ((iPr)PIEA)CoN2 with CH2═CHCH2Br, which resulted in allylation of the enamide carbon. Reduction of Coupled-((iPr)PDI)CoCl (Coupled-((iPr)PDI)CoCl = [2-(2,6-(i)Pr2-C6H3N═CMe)-C5H3N-6-(2,6-(i)Pr2-C6H3N═CCH2-)CoCl]2) with NaBEt3H led to quantitative formation of ((iPr)PIEA)CoN2, demonstrating the reversibility of the C-C bond forming reactions. The electronic structures of each of the bimetallic cobalt products were also elucidated by a combination of experimental and computational methods.


Assuntos
Carbono/química , Cobalto/química , Complexos de Coordenação/química , Nitrogênio/química , Piridinas/química , Elétrons , Iminas/química , Modelos Moleculares , Oxirredução , Teoria Quântica
12.
Inorg Chem ; 52(2): 635-46, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23268722

RESUMO

Oxidation and reduction of the bis(imino)pyridine iron dinitrogen compound, ((iPr)PDI)FeN(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N) has been examined to determine whether the redox events are metal or ligand based. Treatment of ((iPr)PDI)FeN(2) with [Cp(2)Fe][BAr(F)(4)] (BAr(F)(4) = B(3,5-(CF(3))(2)-C(6)H(3))(4)) in diethyl ether solution resulted in N(2) loss and isolation of [((iPr)PDI)Fe(OEt(2))][BAr(F)(4)]. The electronic structure of the compound was studied by SQUID magnetometry, X-ray diffraction, EPR and zero-field (57)Fe Mössbauer spectroscopy. These data, supported by computational studies, established that the overall quartet ground state arises from a high spin iron(II) center (S(Fe) = 2) antiferromagnetically coupled to a bis(imino)pyridine radical anion (S(PDI) = 1/2). Thus, the oxidation event is principally ligand based. The one electron reduction product, [Na(15-crown-5)][((iPr)PDI)FeN(2)], was isolated following addition of sodium naphthalenide to ((iPr)PDI)FeN(2) in THF followed by treatment with the crown ether. Magnetic, spectroscopic, and computational studies established a doublet ground state with a principally iron-centered SOMO arising from an intermediate spin iron center and a rare example of trianionic bis(imino)pyridine chelate. Reduction of the iron dinitrogen complex where the imine methyl groups have been replaced by phenyl substituents, ((iPr)BPDI)Fe(N(2))(2) resulted in isolation of both the mono- and dianionic iron dinitrogen compounds, [((iPr)BPDI)FeN(2)](-) and [((iPr)BPDI)FeN(2)](2-), highlighting the ability of this class of chelate to serve as an effective electron reservoir to support neutral ligand complexes over four redox states.


Assuntos
Elétrons , Iminas/química , Quelantes de Ferro/química , Ferro/química , Nitrogênio/química , Piridinas/química , Ânions , Estrutura Molecular , Oxirredução , Teoria Quântica , Espectroscopia de Mossbauer
13.
Angew Chem Int Ed Engl ; 52(49): 12965-9, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24123920

RESUMO

Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile.


Assuntos
Complexos de Coordenação/química , Háfnio/química , Isocianatos/química , Nitrogênio/química , Ligantes , Modelos Moleculares
14.
J Am Chem Soc ; 134(10): 4561-4, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22390262

RESUMO

Enantiopure C(1)-symmetric bis(imino)pyridine cobalt chloride, methyl, hydride, and cyclometalated complexes have been synthesized and characterized. These complexes are active as catalysts for the enantioselective hydrogenation of geminal-disubstituted olefins.


Assuntos
Alcenos/química , Cobalto/química , Piridinas/química , Hidrogenação , Modelos Moleculares , Estereoisomerismo
15.
J Am Chem Soc ; 134(7): 3377-86, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22324370

RESUMO

Carbonylation of the hafnocene dinitrogen complex, [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-(t)Bu)Hf](2)(µ(2), η(2), η(2)-N(2)), yields the corresponding hafnocene oxamidide compound, arising from N(2) cleavage with concomitant C-C and C-N bond formation. Monitoring the addition of 4 atm of CO by NMR spectroscopy allowed observation of an intermediate hafnocene complex with terminal and bridging isocyanates and a terminal carbonyl. (13)C labeling studies revealed that the carbonyl is the most substitutionally labile ligand in the intermediate and that N-C bond formation in the bridging isocyanate is reversible. No exchange was observed with the terminal isocyanate. Kinetic data established that the conversion of the intermediate to the hafnocene oxamidide was not appreciably inhibited by carbon monoxide and support a pathway involving rate-determining C-C coupling of the isocyanate ligands. Addition of methyl iodide to the intermediate hafnocene resulted in additional carbon-carbon bond formation arising from CO homologation following nitrogen methylation. Similar reactivity with (t)BuNCO was observed where C-C coupling occurred upon cycloaddition of the heterocumulene. By contrast, treatment of the intermediate hafnocene with CO(2) resulted in formation of a µ-oxo hafnocene with two terminal isocyanate ligands.

16.
J Am Chem Soc ; 134(41): 17125-37, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23043331

RESUMO

Addition of biphenylene to the bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(µ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = Me, (i)Pr), resulted in oxidative addition of a C-C bond at ambient temperature to yield the corresponding iron biphenyl compounds, ((R)PDI)Fe(biphenyl). The molecular structures of the resulting bis(imino)pyridine iron metallacycles were established by X-ray diffraction and revealed idealized square pyramidal geometries. The electronic structures of the compounds were studied by Mössbauer spectroscopy, NMR spectroscopy, magnetochemistry, and X-ray absorption and X-ray emission spectroscopies. The experimental data, in combination with broken-symmetry density functional theory calculations, established spin crossover (low to intermediate spin) ferric compounds antiferromagnetically coupled to bis(imino)pyridine radical anions. Thus, the overall oxidation reaction involves cooperative electron loss from both the iron center and the redox-active bis(imino)pyridine ligand.


Assuntos
Carbono/química , Compostos Férricos/química , Imidas/química , Piridinas/química , Compostos Férricos/síntese química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica
17.
J Am Chem Soc ; 133(27): 10406-9, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21682285

RESUMO

Silylation of a hafnocene complex containing a strongly activated dinitrogen ligand, [(η(5)-C(5)H(2)-1,2,4-Me(3))(2)Hf](2)(µ(2),η(2),η(2)-N(2)), by addition of CySiH(3) resulted in N-Si and Hf-H bond formation and a compound poised for subsequent N(2) cleavage. Warming the silane addition product to 75 °C triggered N-N scission, for which the requisite electrons were provided by silyl migration. Dinitrogen cleavage coupled to N-C bond formation was also accomplished by carbonylation of the silylated product, yielding an unprecedented µ-formamidide ([NC(H)O](2-)) ligand. Subsequent treatment with HCl yielded free formamide, demonstrating that an important organic molecule can be synthesized from N(2), CO, an organosilane, and protons.

18.
Organometallics ; 38(5): 1081-1090, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30962670

RESUMO

Cationic cobalt(I) dinitrogen complexes with a strong-field tridentate pincer ligand were prepared and the oxidative addition of polar and non-polar bonds was studied. Addition of H2 to [(iPrPNP)Co(N2)]+ (iPrPNP = 2,6-bis((diisopropylphosphaneyl)methyl)pyridine) in THF-d8 resulted in rapid oxidative addition and formation of the cis-Co(III) dihydride complex, cis-[(iPrPNP)Co(H)2L]+ where L = THF or N2. The addition of H2 was reversible as evidenced by the dynamics observed by variable temperature 1H NMR spectroscopy and the regeneration of [(iPrPNP)Co(N2)]+ upon exposure to dinitrogen. In contrast, addition of HBPin, (Pin = pinacolato) B2Pin2 and aryl halides resulted in the formation of net one-electron oxidation products: cationic Co(II)-boryl and Co(II)-halide/aryl complexes, respectively. All products were structurally characterized by X-ray crystallography and the electronic structures were determined by a combination of magnetic moment measurements, EPR spectroscopy and DFT calculations. Monitoring the addition of HBPin to [(iPrPNP)Co(N2)]+ provided evidence for a transient Co(III) oxidative addition product that likely undergoes comproportionation with the cobalt(I) starting material to generate the observed Co(II) products.

19.
J Am Chem Soc ; 130(11): 3652-63, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18284241

RESUMO

Thermolysis of Cp*W(NO)(CH2CMe3)(eta(3)-CH2CHCHMe) (1) at ambient temperatures leads to the loss of neopentane and the formation of the eta(2)-diene intermediate, Cp*W(NO)(eta(2)-CH2=CHCH=CH2) (A), which has been isolated as its 18e PMe3 adduct. In the presence of linear alkanes, A effects C-H activations of the hydrocarbons exclusively at their terminal carbons and forms 18e Cp*W(NO)(n-alkyl)(eta(3)-CH2CHCHMe) complexes. Similarly, treatments of 1 with methylcyclohexane, chloropentane, diethyl ether, and triethylamine all lead to the corresponding terminal C-H activation products. Furthermore, a judicious choice of solvents permits the C-H activation of gaseous hydrocarbons (i.e., propane, ethane, and methane) at ambient temperatures under moderately elevated pressures. However, reactions between intermediate A and cyclohexene, acetone, 3-pentanone, and 2-butyne lead to coupling between the eta(2)-diene ligand and the site of unsaturation on the organic molecule. For example, Cp*W(NO)(eta(3),eta(1)-CH2CHCHCH2C(CH2CH3)2O) is formed exclusively in 3-pentanone. When the site of unsaturation is sufficiently sterically hindered, as in the case of 2,3-dimethyl-2-butene, C-H activation again becomes dominant, and so the C-H activation product, Cp*W(NO)(eta(1)-CH2CMe=CMe2)(eta(3)-CH2CHCHMe), is formed exclusively from the alkene and 1. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by X-ray crystallographic analyses. Finally, the newly formed alkyl ligands may be liberated from the tungsten centers in the product complexes by treatment with iodine. Thus, exposure of a CDCl3 solution of the n-pentyl allyl complex, Cp*W(NO)(n-C5H11)(eta(3)-CH2CHCHMe), to I2 at -60 degrees C produces n-C5H11I in moderate yields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa