Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432045

RESUMO

The complete detoxification of harmful dyes and antibiotics from aqueous solution is essential for environmental remediation. The present work focuses on a facile hydrothermal synthesis of a cadmium sulfide (CdS) photocatalyst using thioacetamide as a sulfur source. The synthesized CdS showed a hexagonal phase with an energy gap of 2.27 eV, suggesting the promising visible-light-responsive semiconducting photocatalyst. The photoactivity of the prepared CdS was investigated by evaluating the degradation of the Reactive red 141 (RR141) dye, Congo red (CR) dye, and ofloxacin (OFL) antibiotic. After only 180 min of solar light illumination, a high performance of 98%, 97%, and 87% toward degradation of RR141, CR, and OFL was obtained. The photodegradation of the pollutants agrees well with the first-order kinetic model. The rate constant of 0.055 min-1, 0.040 min-1, and 0.026 min-1, respectively, was reported toward degradation of RR141, CR, and OFL. Photogenerated holes and hydroxyl radicals play a vital role in removing toxic organic contaminants. The chemical stability of the prepared CdS was also confirmed. The synthesized CdS photocatalyst still maintains high photocatalytic performance even after five consecutive cycles of use, indicating its excellent cycling ability. The present research shows a facile route to fabricate a CdS photocatalyst to completely detoxify harmful organic pollutants, including dyes and antibiotics, in the environment.


Assuntos
Poluentes Ambientais , Águas Residuárias , Compostos Azo , Ofloxacino , Antibacterianos , Catálise , Corantes , Vermelho Congo
2.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577100

RESUMO

A bismuth oxyiodide (BiOI) photocatalyst with excellent sunlight-driven performance was synthesized by a solvothermal route without the addition of surfactants or capping agents. The prepared photocatalyst exhibited a tetragonal phase with an energy band gap of 2.15 eV. The efficiency of the photocatalyst was elucidated by monitoring the photodegradation of organic dyes and antibiotics. The BiOI photocatalyst provided a 95% removal of norfloxacin (NOR) antibiotics under visible light illumination. Interestingly, the complete removal of Rhodamine B (RhB) dye was achieved after 80 min of natural sunlight irradiation. The photodegradation reaction followed the first-order reaction. Both photo-generated holes and electrons play vital roles in the photodegradation of the pollutant. The BiOI photocatalyst remains stable and still shows a high efficiency even after the fifth run. This confirms the great cycling ability and high structural stability of the photocatalyst. The prepared BiOI catalyst, with a high surface area of 118 m2 g-1, can act as an excellent adsorbent as well. The synergistic effect based on both adsorption and photocatalysis is a key factor in achieving a very high removal efficiency. The photoactivity under sunlight is higher than that observed under visible light, supporting the practical use of the BiOI photocatalyst for the removal of organic pollutants in wastewater through the utilization of abundant solar energy.

3.
ACS Omega ; 8(5): 4835-4852, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777609

RESUMO

The preparation of novel sunlight active photocatalysts for complete removal of pollutants from aqueous solutions is a vital research topic in environmental protection. The present work reports the synthesis of a ZnO/BiVO4 S-scheme heterojunction photocatalyst for degradation of the reactive red dye and oxytetracycline antibiotic in wastewater. ZnO and BiVO4 were first fabricated by a hydrothermal technique, and then, the ZnO/BiVO4 heterostructure was synthesized using an ultrasonic route. An increase of the surface area, compared to that of ZnO, was found in ZnO/BiVO4. The enhancement of charge separation efficiency at the interface was obtained so that a remarkable enhancement of the photocatalytic performance was detected in the prepared heterojunction photocatalyst. Complete detoxification of harmful pollutants was achieved by using the economical solar energy. The removal of the pollutants follows the first-order reaction with the highest rate constant of 0.107 min-1. The stability of the prepared photocatalyst was detected after five cycles of use. The ZnO/BiVO4 S-scheme heterostructure photocatalyst still provides high photoactivity even after five times of use. Hydroxyl radicals play an important role in the removal of the pollutant. This work demonstrates a new route to create the step-scheme heterojunction with high photoactivity for complete removal of the toxic dye and antibiotic in the environment.

4.
Antibiotics (Basel) ; 11(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36358245

RESUMO

It is known that low electron-hole separation efficiency is the major disadvantage influencing low photoactivity of the UV-active ZnO photocatalyst. To solve this drawback, the excellent fabrication technique has been used to disperse silver metal on ZnO surface. In this study, an addition of silver content up to 15 wt% was carried out. The 5Ag-ZnO sample, comprising 5 wt% of silver metal, displayed a hexagonal wurtzite structure, and a band gap of 3.00 eV, with high sunlight-active photocatalytic performance of 99-100% and low photo-corrosion problem. The complete degradation of oxytetracycline (OTC) antibiotic and reactive red dye 141 (RR141) dye under natural sunlight was achieved. The highest rate constant of 0.061 min-1 was detected. The enhancement of the performance is mainly due to lowering of the electron-hole recombination rate. Dispersion of silver on ZnO causes the generation of the Schottky barrier at the interface between Ag and ZnO, so that improvement of quantum efficiency and enhancement of the resultant photoactivity could be expected. Furthermore, good distribution of metallic silver also causes a red shift in absorption of light toward the visible spectrum. This is strongly attributed to the surface plasmon resonance effect, which occurred after successful decoration of the noble metal on ZnO. The photocatalyst, with great structural stability, still maintains high photocatalytic efficiency even after five times of use, implying its excellent cycling ability. The present finding offers a new road to generate a silver decorated ZnO photocatalyst for the complete removal of dye and antibiotics contaminated in the environment.

5.
RSC Adv ; 8(40): 22592-22605, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35539755

RESUMO

A CdS photocatalyst was synthesized successfully at low temperature via a catalyst-free hydrothermal technique which is simple, green and also easily controlled. The synthesized CdS photocatalyst showed hexagonal wurtzite structure with high crystallinity and excellent optical properties. The catalyst was used for degradation of two anionic azo dyes namely reactive red (RR141) and Congo red (CR) azo dyes. The catalyst showed very high efficiency of 99.8% and 99.0% toward photodegradation of RR141 and CR dye, respectively. The photodegradation reaction followed pseudo-first order kinetics. Chemical scavenger studies showed that direct photogenerated hole transfer from CdS to the azo dye was most likely the major pathway for photodegradation of the azo dye. The chemical structure of the CdS photocatalyst remained stable after photodegradation. The CdS photocatalyst retains its original efficiency even after the fifth cycle of reuse indicating the advantages of stability and reusability. The CdS nanostructures will be suitable for removal of highly toxic and hazardous organic materials in environmental protection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa