Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Exp Cell Res ; 392(2): 112011, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339607

RESUMO

Ovarian cancer cells shed from primary tumors can spread easily to the peritoneum via the peritoneal fluid. To allow further metastasis, the cancer cells must interact with the mesothelial cell layer, which covers the entire surface of the peritoneal organs. Although the clinical importance of this interaction between cancer and mesothelial cells has been increasingly recognized, the molecular mechanisms utilized by cancer cells to adhere to and migrate through the mesothelial cell layer are poorly understood. To investigate the molecular mechanisms of cancer cell trans-mesothelial migration, we set up an in vitro trans-mesothelial migration assay using primary peritoneal mesothelial cells. Using this method, we found that downregulation of filopodial protein fascin-1 or myosin X expression in ES-2 cells significantly inhibited the rate of trans-mesothelial migration of cancer cells, whereas upregulation of fascin-1 in SK-OV-3 cells enhanced this rate. Furthermore, downregulation of N-cadherin or integrin ß1 inhibited the rate of cancer cell trans-mesothelial migration. Conversely, downregulation of cortactin or TKS5 or treatment with the MMP inhibitor GM6001 or the N-WASP inhibitor wiskostatin did not have any effect on cancer cell trans-mesothelial migration. These results suggest that filopodia, but not lamellipodia or invadopodia, play an important role in the trans-mesothelial migration of ovarian cancer cells.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Epitélio/patologia , Proteínas dos Microfilamentos/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Pseudópodes/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Adesão Celular , Epitélio/metabolismo , Feminino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas dos Microfilamentos/genética , Miosinas/genética , Miosinas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Prognóstico , Pseudópodes/genética , Pseudópodes/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
2.
Nature ; 521(7551): 217-221, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25778702

RESUMO

Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.


Assuntos
Tamanho Corporal/genética , Proteínas de Peixes/metabolismo , Morfogênese/genética , Oryzias/anatomia & histologia , Oryzias/embriologia , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Proteínas Ativadoras de GTPase/metabolismo , Genes Essenciais/genética , Gravitação , Humanos , Mutação/genética , Tamanho do Órgão/genética , Oryzias/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
3.
Mol Cell Biochem ; 451(1-2): 107-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29992460

RESUMO

Stress granules are evolutionally conserved ribonucleoprotein structures that are formed in response to various stress stimuli. Recent studies have demonstrated that proteins with low complexity (LC) regions play a critical role for the formation of stress granules. In this study, we report that FAM98A, whose biological functions are unknown, is a novel component of stress granules. FAM98A is localized to stress granules, but not to P-bodies, after various stress stimuli. Analysis with deletion mutants revealed that C-terminal region that contains LC region was essential for FAM98A accumulation to stress granules. Depletion of FAM98A using two different siRNAs decreased the number of stress granules formed per cell. Finally, we show that FAM98A associates with stress granule-localized proteins, such as DDX1, ATXN2, ATXN2L, and NUFIP2. Our results show a partial role of FAM98A for the organization of stress granules.


Assuntos
Ataxina-2/metabolismo , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Ataxina-2/genética , RNA Helicases DEAD-box/genética , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas/genética , Proteínas de Ligação a RNA/genética
4.
Exp Cell Res ; 358(2): 101-110, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602627

RESUMO

DEPDC1 (DEP domain containing 1) is overexpressed in multiple cancers and is associated with cell cycle progression. In this report, we have investigated the expression, localization, phosphorylation and function of DEPDC1 during mitosis. DEPDC1 has two isoforms (isoform a and isoform b), and both of them are increased in mitosis and degraded once cells exit mitosis. DEPDC1a is localized to the centrosome in metaphase, whereas DEPDC1b is localized to the entire cell cortex during mitosis. DEPDC1a, but not DEPDC1b, was required for the integrity of centrosome and organization of the bipolar spindle. Mass spectrometry and biochemical analyses revealed phosphorylation of DEPDC1 at Ser110. The phosphorylation of Ser110 is essential for localization of DEPDC1a to the centrosome. Consistently, non-phosphorylation mutants of DEPDC1a did not rescue disruption of centrosome organization by depletion of endogenous DEPDC1. Our results show a novel role for DEPDC1 in maintaining centrosome integrity during mitosis for the accurate distribution of chromosomes.


Assuntos
Centrossomo/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Proteínas Ativadoras de GTPase/genética , Humanos , Proteínas de Neoplasias/genética , Fosforilação , Serina/genética , Serina/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
5.
FASEB J ; 30(1): 312-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26381755

RESUMO

Proper bioriented attachment of microtubules and kinetochores is essential for the precise distribution of duplicated chromosomes to each daughter cell. An aberrant kinetochore-microtubule attachment results in chromosome instability, which leads to cellular transformation or apoptosis. In this article, we show that ubiquitin-associated protein 2-like (UBAP2L) is necessary for correct kinetochore-microtubule attachment. Depletion of UBAP2L inhibited chromosome alignment in metaphase and delayed progression to anaphase by activating spindle assembly checkpoint signaling. In addition, UBAP2L knockdown increased side-on attachment of kinetochores along the microtubules and suppressed stable kinetochore fiber formation. A proteomics analysis identified protein arginine methyltransferase (PRMT)1 as a direct interaction partner of UBAP2L. UBAP2L has an arginine- and glycine-rich motif called the RGG/RG or GAR motif in the N terminus. Biochemical analysis confirmed that arginine residues in the RGG/RG motif of UBAP2L were directly methylated by PRMT1. Finally, we demonstrated that the RGG/RG motif of UBAP2L is essential for the proper alignment of chromosomes in metaphase for the accurate distribution of chromosomes. Our results show a possible role for arginine methylation in UBAP2L for the progression of mitosis.


Assuntos
Proteínas de Transporte/metabolismo , Cinetocoros/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Arginina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Microtúbulos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Cancer Sci ; 107(9): 1315-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27316377

RESUMO

Nek2 (NIMA-related kinase 2) is a serine-threonine kinase and human homolog of the mitotic regulator NIMA of Aspergillus nidulan. We reported the efficiency of Nek2 siRNA in several cancer xenograft models using cholangiocarcinoma, breast cancer and colorectal cancer. Pancreatic cancer is difficult to treat due to its rapid progression and resistance to chemotherapy. Novel treatments are urgently required to improve survival in pancreatic cancer, and siRNA are a promising therapeutic option. However, finding an in vivo drug delivery system of siRNA remains a major problem for clinical application. In this study, the overexpression of Nek2 was identified in pancreatic cancer cell lines. Nek2 siRNA inhibited tumor growth in a subcutaneous xenograft mouse model of pancreatic cancer, prolonged the survival time in an intraperitoneal xenograft mouse model and efficiently prevented the progression of liver metastasis using a portal venous port-catheter system. Taken together, Nek2 is an effective therapeutic target in pancreatic cancer. An adequate delivery system is considered important in treating advanced pancreatic cancer, such as peritoneal dissemination and liver metastasis. Further investigations are required on the safety and side effects of the portal venous port-catheter system. We hope that Nek2 siRNA will be a novel therapeutic strategy for pancreatic cancer with liver metastasis and peritoneal dissemination.


Assuntos
Neoplasias Hepáticas/secundário , Quinases Relacionadas a NIMA/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Veia Porta , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Dispositivos de Acesso Vascular , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Camundongos Nus , Interferência de RNA , Ratos , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Tumour Biol ; 37(4): 4531-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26503212

RESUMO

Protein arginine methylation, which is mediated by a family of protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Accumulating studies have revealed that the expression of multiple PRMTs promotes cancer progression. In this study, we examined the role of PRMT1 in ovarian cancer cells. PRMT1 is expressed in multiple ovarian cancer cells, and the depletion of its expression suppressed colony formation, in vivo proliferation, migration, and invasion. To gain insight into PRMT1-mediated cancer progression, we searched for novel substrates of PRMT1. We found that FAM98A, whose physiological function is unknown, was arginine-methylated by PRMT1. FAM98A is expressed in numerous ovarian cancer cell lines and is important for the malignant characteristics of ovarian cancer cells. Our results indicate the possible role of the PRMT1-FAM98A pathway in cancer progression.


Assuntos
Movimento Celular , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Metilação , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias
8.
Tumour Biol ; 37(1): 763-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26245992

RESUMO

Ubiquitination is essential for various biological processes, such as signal transduction, intracellular trafficking, and protein degradation. Accumulating evidence has demonstrated that ubiquitination plays a crucial role in cancer development. In this report, we examine the expression and function of ubiquitin-conjugating enzyme E2S (UBE2S) in breast cancer. Immunohistochemical analysis revealed that UBE2S is highly expressed in breast cancer. The depletion of UBE2S by siRNA induced disruption of the actin cytoskeleton and focal adhesions. Interestingly, phosphorylation of FAK at Tyr397, which is important for the transduction of integrin-mediated signaling, was significantly reduced by UBE2S knockdown. We also show that UBE2S knockdown suppressed the malignant characteristics of breast cancer cells, such as migration, invasion, and anchorage-independent growth. Our results indicate that UBE2S could be a potential target for breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Enzimas de Conjugação de Ubiquitina/metabolismo , Citoesqueleto de Actina/metabolismo , Idoso , Anoikis , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Transformação Celular Neoplásica , Citoplasma/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Imuno-Histoquímica , Integrinas/metabolismo , Células MCF-7 , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitinação
9.
Exp Cell Res ; 332(1): 78-88, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25523619

RESUMO

Invadopodia are specialized actin-based microdomains of the plasma membrane that combine adhesive properties with matrix degrading activities. Proper functioning of the bone, immune, and vascular systems depend on these organelles, and their relevance in cancer cells is linked to tumor metastasis. The elucidation of the mechanisms driving invadopodia formation is a prerequisite to understanding their role and ultimately to controlling their functions. Special AT-rich sequence-binding protein 2 (SATB2) was reported to suppress tumor cell migration and metastasis. However, the mechanism of action of SATB2 is unknown. Here, we show that SATB2 inhibits invadopodia formation in HCT116 cells and that the molecular scaffold palladin is inhibited by exogenous expression of SATB2. To confirm this association, we elucidated the function of palladin in HCT116 using a knock down strategy. Palladin knock down reduced cell migration and invasion and inhibited invadopodia formation. This phenotype was confirmed by a rescue experiment. We then demonstrated that palladin expression in SATB2-expressing cells restored invasion and invadopodia formation. Our results showed that SATB2 action is mediated by palladin inhibition and the SATB2/palladin pathway is associated with invadopodia formation in colorectal cancer cells.


Assuntos
Extensões da Superfície Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Fosfoproteínas/metabolismo , Fatores de Transcrição/fisiologia , Movimento Celular , Células HCT116 , Humanos , Transporte Proteico
10.
Sci Technol Adv Mater ; 17(1): 618-625, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877908

RESUMO

World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 µl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

11.
J Cell Sci ; 126(Pt 15): 3263-70, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23704356

RESUMO

Centralspindlin, which is composed of MgcRacGAP and MKLP1, is essential for central spindle formation and cytokinetic furrow ingression. MgcRacGAP utilizes its GAP domain to inactivate Rac1 and induce furrow ingression in mammalian cells. In this report, we present a novel regulatory mechanism for furrowing that is mediated by the phosphorylation of SHC SH2-domain binding protein 1 (SHCBP1), a binding partner of centralspindlin, by Aurora B (AurB). AurB phosphorylates Ser634 of SHCBP1 during mitosis. We generated a phosphorylation site mutant, S634A-SHCBP1, which was prematurely recruited to the central spindle during anaphase and inhibited furrowing. An in vitro GAP assay demonstrated that SHCBP1 can suppress the MgcRacGAP-mediated inactivation of Rac1. In addition, the inhibition of Rac1 activity rescued the furrowing defect induced by S634A-SHCBP1 expression. Thus, AurB phosphorylates SHCBP1 to prevent the premature localization of SHCBP1 to the central spindle and ensures that MgcRacGAP inactivates Rac1 to promote the ingression of the cytokinetic furrow.


Assuntos
Aurora Quinase B/metabolismo , Ciclo Celular/fisiologia , Citocinese/fisiologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Aurora Quinase B/genética , Ciclo Celular/genética , Citocinese/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Proteínas Adaptadoras da Sinalização Shc/genética , Fuso Acromático/química , Fuso Acromático/genética
12.
J Cell Sci ; 126(Pt 16): 3627-37, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23750008

RESUMO

Polo-like kinase 1 (PLK1) is a widely conserved serine/threonine kinase that regulates progression of multiple stages of mitosis. Although extensive studies about PLK1 functions during cell division have been performed, it is still not known how PLK1 regulates myosin II activation at the equatorial cortex and ingression of the cleavage furrow. In this report, we show that an actin/myosin-II-binding protein, supervillin (SVIL), is a substrate of PLK1. PLK1 phosphorylates Ser238 of SVIL, which can promote the localization of SVIL to the central spindle and association with PRC1. Expression of a PLK1 phosphorylation site mutant, S238A-SVIL, inhibited myosin II activation at the equatorial cortex and induced aberrant furrowing. SVIL has both actin- and myosin-II-binding regions in the N-terminus. Expression of ΔMyo-SVIL (deleted of the myosin-II-binding region), but not of ΔAct-SVIL (deleted of actin-binding region), reduced myosin II activation and caused defects in furrowing. Our study indicates a possible role of phosphorylated SVIL as a molecular link between the central spindle and the contractile ring to coordinate the activation of myosin II for the ingression of the cleavage furrow.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Citocinese/fisiologia , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Miosina Tipo II/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transfecção , Quinase 1 Polo-Like
13.
Carcinogenesis ; 35(9): 1993-2001, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24675530

RESUMO

Pleomorphic adenoma gene like-2 (PLAGL2), a member of the PLAG gene family, is a C2H2 zinc finger transcriptional factor that is involved in cellular transformation and apoptosis. In this report, we show that PLAGL2 is associated with the organization of stress fibers and with small guanosine triphosphatase (GTPase) activity. Depletion of PLAGL2 in two different ovarian cancer cell lines, ES-2 and HEY, induced activation of RhoA, whereas activity of Rac1 was suppressed. Organization of actin stress fibers and focal adhesions was significantly promoted by PLAGL2 knockdown in a RhoA-dependent manner. Conversely, exogenous expression of PLAGL2 in MDA-MB-231 cells, a breast cancer cell line, resulted in the activation of Rac1 and the inactivation of RhoA. In addition, PLAGL2 expression induced lamellipodia formation and disruption of stress fiber formation. Finally, we show that CHN1 expression is essential for Rac1 inactivation in PLAGL2-depleted cells. Our results demonstrate a crucial role of PLAGL2 in actin dynamics and give further insight into the role of PLAGL2 in cellular transformation and apoptosis.


Assuntos
Movimento Celular , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Fibras de Estresse/metabolismo , Fatores de Transcrição/fisiologia , Linhagem Celular Tumoral , Quimerina 1/metabolismo , Humanos , Pseudópodes/metabolismo , Pseudópodes/patologia , Fibras de Estresse/patologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Cancer Sci ; 105(12): 1526-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25250919

RESUMO

The striatin family of proteins, comprising STRN, STRN3 and STRN4, are multidomain-containing proteins that associate with additional proteins to form a large protein complex. We previously reported that STRN4 directly associated with protein kinases, such as MINK1, TNIK and MAP4K4, which are associated with tumor suppression or tumor progression. However, it remains unclear whether STRN4 is associated with tumor progression. In this report, we examined the role that STRN4 plays in cancer malignancy. We show that depletion of STRN4 suppresses proliferation, migration, invasion and the anchorage-independent growth of cancer cells. In addition, STRN4 knockdown increases the sensitivity of pancreatic cancer cells to gemcitabine. Finally, we show that STRN4 knockdown suppresses the proliferation and metastasis of cancer cells in mice. Our results demonstrate a possible role of STRN4 in tumor progression.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Metástase Neoplásica/patologia , Neoplasias Experimentais/patologia , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Anoikis , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neoplasias Experimentais/genética , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno/metabolismo , Gencitabina
15.
Tumour Biol ; 35(6): 5911-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24590270

RESUMO

Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP(+) to NADPH. IDH1 mutations are frequently detected in grades 2-4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to D-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-L-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Glutamina/metabolismo , Isocitrato Desidrogenase/genética , Metaboloma , Mutação , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Glioma/metabolismo , Glutaminase/antagonistas & inibidores , Glutaratos/análise , Células HEK293 , Humanos , Ácidos Cetoglutáricos/farmacologia , Temozolomida
16.
Mol Cell Biochem ; 389(1-2): 9-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337944

RESUMO

Membrane blebs are round-shaped dynamic membrane protrusions that occur under many physiological conditions. Membrane bleb production is primarily controlled by actin cytoskeletal rearrangements mediated by RhoA. Tre2-Bub2-Cdc16 (TBC) domain-containing proteins are negative regulators of the Rab family of small GTPases and contain a highly conserved TBC domain. In this report, we show that the expression of TBC1D15 is associated with the activity of RhoA and the production of membrane blebs. Depletion of TBC1D15 induced activation of RhoA and membrane blebbing, which was abolished by the addition of an inhibitor for RhoA signaling. In addition, we show that TBC1D15 is required for the accumulation of RhoA at the equatorial cortex for the ingression of the cytokinetic furrow during cytokinesis. Our results demonstrate a novel role for TBC1D15 in the regulation of RhoA during membrane blebbing and cytokinesis.


Assuntos
Proteínas Ativadoras de GTPase/genética , Inativação Gênica/fisiologia , Membranas/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Linhagem Celular Tumoral , Citocinese/genética , Citocinese/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
17.
J Biol Chem ; 287(30): 25019-29, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22665485

RESUMO

Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Citocinese/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a Calmodulina/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexos Multienzimáticos/genética , Proteínas do Tecido Nervoso/genética , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética
18.
Mol Cell Biochem ; 374(1-2): 105-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23129259

RESUMO

Dynamic remodeling of the actin cytoskeleton is crucial for biological processes such as cell migration and cell spreading. S100A10 is a member of the S100 protein family and is involved in intracellular trafficking and cell migration. In this study, we examined the role of S100A10 in actin cytoskeletal organization and cell spreading. Depletion of S100A10 induced disruption of stress fiber formation and delay in cell spreading. Rac1 activation during spreading was suppressed by S100A10 knockdown, and exogenous expression of active Rac1 restored the ability of cells to spread in the absence of S100A10. Our results demonstrate the crucial role of S100A10 in actin dynamics promoting cell spreading via Rac1 activation.


Assuntos
Citoesqueleto de Actina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Fibras de Estresse
19.
J Biol Chem ; 285(6): 3806-3814, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19948721

RESUMO

Nitric oxide (NO) plays a pivotal role in tumorigenesis, particularly with relation to cancer cell invasion and metastasis. NO can reversibly couple to cysteine thiols to form an S-nitrosothiol, which regulates the enzymatic activities of target proteins. c-Src is a tyrosine kinase that promotes cancer cell invasion and metastasis. Interestingly, c-Src can be activated by NO stimulation. However, mechanisms by which NO stimulates Src kinase activity have not been elucidated. We report here that NO causes S-nitrosylation of c-Src at cysteine 498 (Cys(498)) to stimulate its kinase activity. Cys(498) is conserved among Src family kinases, and Cys(506) of c-Yes, which corresponds to Cys(498) of c-Src, was also important for the NO-mediated activation of c-Yes. Estrogens may work synergistically with NO to induce the proliferation and migration of many kinds of breast cancer cells. For example, beta-estradiol induces the expression of endothelial nitric synthase and production of NO in MCF7 cells. We found that activation of c-Src in MCF7 cells by beta-estradiol stimulation was mediated by the S-nitrosylation of Cys(498). In addition, we report that disruption of E-cadherin junctions and enhancement of cell invasion by beta-estradiol stimulation was mediated by NO-dependent activation of c-Src. These results identify a novel signaling pathway that links NO and Src family kinases to cancer cell invasion and metastasis.


Assuntos
Movimento Celular , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Estradiol/farmacologia , Humanos , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Doadores de Óxido Nítrico/farmacologia , Nitrosação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas c-yes/metabolismo , Interferência de RNA , S-Nitroso-N-Acetilpenicilamina/farmacologia , Homologia de Sequência de Aminoácidos , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa