Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 78(2): 193-210, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032020

RESUMO

OBJECTIVE: Migraine is among the most common and debilitating neurological conditions. Familial hemiplegic migraine type 1 (FHM1), a monogenic migraine subtype, is caused by gain-of-function of voltage-gated CaV 2.1 calcium channels. FHM1 mice carry human pathogenic mutations in the α1A subunit of CaV 2.1 channels and are highly susceptible to cortical spreading depression (CSD), the electrophysiologic event underlying migraine aura. To date, however, the mechanism underlying increased CSD/migraine susceptibility remains unclear. METHODS: We employed in vivo multiphoton microscopy of the genetically encoded Ca(2+)-indicator yellow cameleon to investigate synaptic morphology and [Ca(2+)]i in FHM1 mice. To study CSD-induced cerebral oligemia, we used in vivo laser speckle flowmetry and multimodal imaging. With electrophysiologic recordings, we investigated the effect of the CaV 2.1 gating modifier tert-butyl dihydroquinone on CSD in vivo. RESULTS: FHM1 mutations elevate neuronal [Ca(2+)]i and alter synaptic morphology as a mechanism for enhanced CSD susceptibility that we were able to normalize with a CaV 2.1 gating modifier in hyperexcitable FHM1 mice. At the synaptic level, axonal boutons were larger, and dendritic spines were predominantly of the mushroom type, which both provide a structural correlate for enhanced neuronal excitability. Resting neuronal [Ca(2+)]i was elevated in FHM1, with loss of compartmentalization between synapses and neuronal shafts. The percentage of calcium-overloaded neurons was increased. Neuronal [Ca(2+)]i surge during CSD was faster and larger, and post-CSD oligemia and hemoglobin desaturation were more severe in FHM1 brains. INTERPRETATION: Our findings provide a mechanism for enhanced CSD susceptibility in hemiplegic migraine. Abnormal synaptic Ca(2+) homeostasis and morphology may contribute to chronic neurodegenerative changes as well as enhanced vulnerability to ischemia in migraineurs.


Assuntos
Canais de Cálcio Tipo N/genética , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/genética , Enxaqueca com Aura/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio Tipo N/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Homeostase/genética , Hidroquinonas/farmacologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Enxaqueca com Aura/genética , Enxaqueca com Aura/patologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
2.
Stroke ; 46(1): 229-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424478

RESUMO

BACKGROUND AND PURPOSE: Migraine with aura is an established stroke risk factor, and excitatory mechanisms such as spreading depression (SD) are implicated in the pathogenesis of both migraine and stroke. Spontaneous SD waves originate within the peri-infarct tissue and exacerbate the metabolic mismatch during focal cerebral ischemia. Genetically enhanced SD susceptibility facilitates anoxic depolarizations and peri-infarct SDs and accelerates infarct growth, suggesting that susceptibility to SD is a critical determinant of vulnerability to ischemic injury. Because chronic treatment with migraine prophylactic drugs suppresses SD susceptibility, we tested whether migraine prophylaxis can also suppress ischemic depolarizations and improve stroke outcome. METHODS: We measured the cortical susceptibility to SD and ischemic depolarizations, and determined tissue and neurological outcomes after middle cerebral artery occlusion in wild-type and familial hemiplegic migraine type 1 knock-in mice treated with vehicle, topiramate or lamotrigine daily for 7 weeks or as a single dose shortly before testing. RESULTS: Chronic treatment with topiramate or lamotrigine reduced the susceptibility to KCl-induced or electric stimulation-induced SDs as well as ischemic depolarizations in both wild-type and familial hemiplegic migraine type 1 mutant mice. Consequently, both tissue and neurological outcomes were improved. Notably, treatment with a single dose of either drug was ineffective. CONCLUSIONS: These data underscore the importance of hyperexcitability as a mechanism for increased stroke risk in migraineurs, and suggest that migraine prophylaxis may not only prevent migraine attacks but also protect migraineurs against ischemic injury.


Assuntos
Anticonvulsivantes/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Frutose/análogos & derivados , Infarto da Artéria Cerebral Média , Transtornos de Enxaqueca/prevenção & controle , Triazinas/farmacologia , Animais , Isquemia Encefálica , Canais de Cálcio Tipo N/genética , Quimioprevenção , Depressão Alastrante da Atividade Elétrica Cortical/genética , Frutose/farmacologia , Técnicas de Introdução de Genes , Lamotrigina , Camundongos , Acidente Vascular Cerebral , Topiramato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa