RESUMO
Tomographic diffractive microscopy (TDM) is a label-free imaging technique that reconstructs the 3D refractive index map of the probed object with an improved resolution compared to confocal microscopy. In this work, we consider a TDM implementation in which the sample is deposited on a reflective substrate. We show that this configuration requires calibration and inversion procedures that account for the presence of the substrate for getting highly resolved quantitative reconstructions.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia/métodos , Tomografia/métodos , Algoritmos , Análise de Fourier , RefratometriaRESUMO
The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This moderately low-cost technology can be easily implemented and controlled thanks to the good reproducibility of the actuation. By using a flexible printed circuit board technology, we demonstrate experimentally that a device of 61 actuators in thermal contact with the back surface of a high-reflective mirror is able to correct the low-order aberrations of a laser beam at 1064 nm and could be used to optimize the mode matching into Fabry-Perot cavities.