RESUMO
The differential transcript patterns of five antioxidant genes, four genes related to the ginsenoside pathway and five P450 genes related to defense mechanism were investigated in in vitro adventitious roots of Panax ginseng after exposure to two different concentrations of heavy metals for 7 days. PgSOD-1 and PgCAT transcription increased in a dose-dependent manner during the exposure to CuCl(2), NiCl(2), and CdCl(2), while all other tested scavenging enzymes didn't show significant increase during heavy metal exposure. Conversely, the mRNA transcripts of PgSQE, PgDDS were highly responsive to CuCl(2) compared to NiCl(2) exposure. However, the transcript profile of Pgß-AS was highly induced upon NiCl(2) treatment compared to CuCl(2) and CdCl(2) exposure. The expressions of PgCYP716A42, PgCYP71A50U, and PgCYP82C22 were regulated in similar manners, and all showed the highest transcript profile at 100 µM of CuCl(2), CdCl(2), and NiCl(2) except PgCYP71D184, which showed the highest transcript level when subjected to 10 µM CuCl(2) and NiCl(2). Thus it may suggest that in P. ginseng heavy metal interaction on cell membrane induced expression of various defense related genes via jasmonic acid pathway and also possesses cross talk networks with other defense related pathways.
Assuntos
Antioxidantes/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ginsenosídeos/biossíntese , Metais Pesados/toxicidade , Panax/efeitos dos fármacos , RNA Mensageiro/genética , Sequência de Bases , Primers do DNA , Etiquetas de Sequências Expressas , Reação em Cadeia da Polimerase em Tempo RealRESUMO
A cDNA clone containing a S-adenosyl-L-methionine synthetase (SAMS) gene, named as PgSAM, was isolated from a commercial medicinal plant Panax ginseng. PgSAM is predicted to encode a precursor protein of 307 amino acid residues, and its sequence shares high homology with a number of other plant SAMS. PgSAM is expressed at different levels in various organs of ginseng. The expression of PgSAM in adventitious roots and hairy roots of P. ginseng were analyzed using reverse transcriptase (RT)-PCR and real-time PCR under various abiotic stresses. Salt, salicylic acid, abscisic acid and chilling stresses induced PgSAM significantly at different time points within 2-72 h post-treatment. This study revealed that PgSAM may help to protect the plants against various abiotic stresses.
RESUMO
Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freezing and drought-tolerance in plants. A full-length cDNA encoding DHN (designated as ClDhn) was isolated from an oriental medicinal plant Codonopsis lanceolata, which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, triggered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration.