Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Plant J ; 117(2): 616-631, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910396

RESUMO

The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.


Assuntos
Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Proteínas Heterotriméricas de Ligação ao GTP , Indenos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/genética
2.
Plant J ; 116(4): 1097-1117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824297

RESUMO

We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.


Assuntos
Plantas , Proteômica , Plantas/genética , Transcriptoma , Estresse Fisiológico/genética , Fenótipo , Secas , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Cell Environ ; 47(6): 2109-2126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409868

RESUMO

Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.


Assuntos
Secas , Doenças das Plantas , Doenças das Plantas/microbiologia , Estresse Fisiológico , Produtos Agrícolas/fisiologia , Produtos Agrícolas/microbiologia , Imunidade Vegetal
4.
J Exp Bot ; 75(3): 674-688, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864841

RESUMO

Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.


Assuntos
Plantas , Estresse Fisiológico
5.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427826

RESUMO

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

6.
Mol Plant Microbe Interact ; 35(7): 583-591, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35253477

RESUMO

Drought plays a central role in increasing the incidence and severity of dry root rot (DRR) disease in chickpea. This is an economically devastating disease, compromising chickpea yields particularly severely in recent years due to erratic rainfall patterns. Macrophomina phaseolina (formerly Rhizoctonia bataticola) is the causal agent of DRR disease in the chickpea plant. The infection pattern in chickpea roots under well-watered conditions and drought stress are poorly understood at present. This study provides detailed disease symptomatology and the characteristics of DRR fungus at morphological and molecular levels. Using microscopy techniques, the infection pattern of DRR fungus in susceptible chickpea roots was investigated under well-watered and drought-stress conditions. Our observations suggested that drought stress intensifies the progression of already ongoing infection by weakening the endodermal barrier and overall defense. Transcriptomic analysis suggested that the plant's innate immune defense program is downregulated in infected roots when subjected to drought stress. Furthermore, genes involved in hormonal regulation are differentially expressed under drought stress. These findings provide hints in terms of potential chickpea genes to target in crop improvement programs to develop climate-change-resilient cultivars.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cicer , Ascomicetos , Cicer/genética , Cicer/microbiologia , Secas , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/microbiologia , Água
7.
Plant Cell Environ ; 45(4): 1127-1145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102557

RESUMO

In nature, plants are frequently exposed to drought and bacterial pathogens simultaneously. However, information on how the drought and defence pathways interact and orchestrate global transcriptional regulation is limited. Here, we show that moderate drought stress enhances the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. Using transcriptome meta-analysis, we found that drought and bacterial stress antagonistically modulate a large set of genes predominantly involved in salicylic acid (SA) and abscisic acid (ABA) signalling networks. We identified that the levels of SA and ABA are dynamically regulated during the course of stress. Importantly, under combined stress, drought through the ABA pathway downregulates the induction of Calmodulin-binding Protein 60 g (CBP60g) and Systemic Acquired Resistance Deficient 1 (SARD1), two transcription factors crucial for SA production upon bacterial infection. We also identified an important role of NPR1-LIKE PROTEIN 3 and 4 (NPR3/4) transcriptional repressors in the drought-mediated negative regulation of CBP60g/SARD1 expression. Using a genetic approach, we show that CBP60g/SARD1 expression is the key determinant of plant defence against bacterial pathogens under combined stress. Thus, these transcription factors act as critical nodes for the crosstalk between drought and bacterial stress signalling under combined stress in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Dis ; 106(2): 346-356, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34649462

RESUMO

Chickpea is an essential crop for protein nutrition and is grown around the world in rain-fed conditions. However, chickpea cultivation is under threat due to emerging diseases favored by drought stress. Dry root rot (DRR), an economically devastating disease, is an example. Chickpea-specific strains of a necrotic fungal phytopathogen, Macrophomina phaseolina, cause DRR. Microsclerotia of this fungus, which are capable of withstanding harsh environmental conditions, serve as primary inoculum. Initial symptoms are scattered necrotic spots in roots, progressing to rotting and withering lateral roots, accompanied by prematurely dried, straw-colored foliage. The recent rise in global temperature and worsening of drought spells have aggravated DRR outbreaks in chickpea. To date, DRR epidemiology has not been clarified in detail. Also, the literature lacks clarity on M. phaseolina taxonomy, morphology, disease progression, and diagnosis. In this article, research progress on patterns of DRR occurrence in the field and belowground and aboveground symptoms are clarified. In addition, the current understanding of taxonomy and management practices is elaborated. We also summarize knowledge of the impact of drought and high temperature on DRR severity. Furthermore, we provide future perspectives on the importance of host resistance, quantitative trait loci identification, and genotype screening for the identification of resistant genotypes. The article proposes new research priorities and a corresponding plan for the mitigation of DRR.


Assuntos
Cicer , Biodiversidade , Cicer/genética , Cicer/microbiologia , Secas , Doenças das Plantas/microbiologia , Temperatura
9.
Mol Plant Microbe Interact ; 34(3): 297-308, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33231502

RESUMO

Many plant-encoded E3 ligases are known to be involved in plant defense. Here, we report a novel role of E3 ligase SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1) in plant immunity. Even though SDIR1 is reasonably well-characterized, its role in biotic stress response is not known. The silencing of SDIR1 in Nicotiana benthamiana reduced the multiplication of the virulent bacterial pathogen Pseudomonas syringae pv. tabaci. The Arabidopsis sdir1 mutant is resistant to virulent pathogens, whereas SDIR1 overexpression lines are susceptible to both host and nonhost hemibiotrophic bacterial pathogens. However, sdir1 mutant and SDIR1 overexpression lines showed hypersusceptibility and resistance, respectively, against the necrotrophic pathogen Erwinia carotovora. The mutant of SDIR1 target protein, i.e., SDIR-interacting protein 1 (SDIR1P1), also showed resistance to host and nonhost pathogens. In SDIR1 overexpression plants, transcripts of NAC transcription factors were less accumulated and the levels of jasmonic acid (JA) and abscisic acid were increased. In the sdir1 mutant, JA signaling genes JAZ7 and JAZ8 were downregulated. These data suggest that SDIR1 is a susceptibility factor and its activation or overexpression enhances disease caused by P. syringae pv. tomato DC3000 in Arabidopsis. Our results show a novel role of SDIR1 in modulating plant defense gene expression and plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Doença , Interações Hospedeiro-Patógeno , Ubiquitina-Proteína Ligases , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Nicotiana/enzimologia , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Plant Physiol ; 184(1): 65-81, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651189

RESUMO

We report an advanced web server, the plant-specific small noncoding RNA interference tool pssRNAit, which can be used to design a pool of small interfering RNAs (siRNAs) for highly effective, specific, and nontoxic gene silencing in plants. In developing this tool, we integrated the transcript dataset of plants, several rules governing gene silencing, and a series of computational models of the biological mechanism of the RNA interference (RNAi) pathway. The designed pool of siRNAs can be used to construct a long double-strand RNA and expressed through virus-induced gene silencing (VIGS) or synthetic transacting siRNA vectors for gene silencing. We demonstrated the performance of pssRNAit by designing and expressing the VIGS constructs to silence Phytoene desaturase (PDS) or a ribosomal protein-encoding gene, RPL10 (QM), in Nicotiana benthamiana We analyzed the expression levels of predicted intended-target and off-target genes using reverse transcription quantitative PCR. We further conducted an RNA-sequencing-based transcriptome analysis to assess genome-wide off-target gene silencing triggered by the fragments that were designed by pssRNAit, targeting different homologous regions of the PDS gene. Our analyses confirmed the high accuracy of siRNA constructs designed using pssRNAit The pssRNAit server, freely available at https://plantgrn.noble.org/pssRNAit/, supports the design of highly effective and specific RNAi, VIGS, or synthetic transacting siRNA constructs for high-throughput functional genomics and trait improvement in >160 plant species.


Assuntos
Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Oxirredutases/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Nicotiana/genética
11.
Plant Cell ; 29(9): 2233-2248, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28855332

RESUMO

Plants have complex and adaptive innate immune responses against pathogen infections. Stomata are key entry points for many plant pathogens. Both pathogens and plants regulate stomatal aperture for pathogen entry and defense, respectively. Not all plant proteins involved in stomatal aperture regulation have been identified. Here, we report GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase family protein, as one of the key proteins regulating stomatal aperture during biotic and abiotic stress. Silencing of GCN4 in Nicotiana benthamiana and Arabidopsis thaliana compromises host and nonhost disease resistance due to open stomata during pathogen infection. AtGCN4 overexpression plants have reduced H+-ATPase activity, stomata that are less responsive to pathogen virulence factors such as coronatine (phytotoxin produced by the bacterium Pseudomonas syringae) or fusicoccin (a fungal toxin produced by the fungus Fusicoccum amygdali), reduced pathogen entry, and enhanced drought tolerance. This study also demonstrates that AtGCN4 interacts with RIN4 and 14-3-3 proteins and suggests that GCN4 degrades RIN4 and 14-3-3 proteins via a proteasome-mediated pathway and thereby reduces the activity of the plasma membrane H+-ATPase complex, thus reducing proton pump activity to close stomata.


Assuntos
Proteínas 14-3-3/metabolismo , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Resistência à Doença , Secas , Nicotiana/imunologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Sequência Conservada , DNA Complementar/genética , Inativação Gênica/efeitos dos fármacos , Modelos Biológicos , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia
12.
Mol Plant Microbe Interact ; 32(12): 1598-1613, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31364484

RESUMO

Alternaria blight, caused by Alternaria brassicae, causes considerable yield loss in Brassica crops. While several blight-resistant varieties have been developed using resistance sources from host germplasm, none of them are entirely successful in imparting durable resistance. This has prompted the exploration of novel gene pools of nonhost plant species. Nonhost resistance (NHR) is a durable form of resistance, comprising pre- and postinvasion layers of defense. We aimed to identify the molecular basis of NHR to A. brassicae and identify the layers of NHR operating in a nonhost, chickpea (Cicer arietinum). To elucidate the layers of NHR operating against A. brassicae, we compared the histopathology and infection patterns of A. brassicae in C. arietinum and Brassica juncea. Delayed conidial germination, impeded hyphal growth, suppressed appressorium formation, and limited hyphal penetration occurred in the nonhost plant compared with the host plant, implying the involvement of the preinvasion layer of NHR in C. arietinum. Next, we investigated the molecular basis of robust NHR, in C. arietinum challenged with A. brassicae, by microarray-based global transcriptome profiling. Genes involved in stomatal closure, cuticular wax biosynthesis, cell-wall modification, and secondary metabolite production (contributing to preinvasion NHR) as well as reactive oxygen species (ROS) and cell death (contributing to postinvasion NHR) were found to be upregulated. Consistent with transcriptomic analysis, the morpho-pathological analysis revealed stomatal closure, ROS accumulation, and localized cell death in C. arietinum as the defense strategies against A. brassicae. Thus, we identified NHR-contributing genes with potential applications in blight resistance gene transfer to B. juncea.


Assuntos
Alternaria , Cicer , Resistência à Doença , Transcriptoma , Alternaria/fisiologia , Cicer/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Mostardeira/genética , Mostardeira/microbiologia
13.
Mol Plant Microbe Interact ; 31(12): 1280-1290, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29877165

RESUMO

Plants are naturally resistant to most pathogens through a broad and durable defense response called nonhost disease resistance. Nonhost disease resistance is a complex process that includes preformed physical and chemical barriers and induced responses. In spite of its importance, many components of nonhost disease resistance remain to be identified and characterized. Using virus-induced gene silencing in Nicotiana benthamiana, we discovered a novel gene that we named NbNHR2 (N. benthamiana nonhost resistance 2). NbNHR2-silenced plants were susceptible to the nonadapted pathogen Pseudomonas syringae pv. tomato T1, which does not cause disease in wild-type or nonsilenced N. benthamiana plants. We found two orthologous genes in Arabidopsis thaliana: AtNHR2A and AtNHR2B. Similar to the results obtained in N. benthamiana, Atnhr2a and Atnhr2b mutants were susceptible to the nonadapted bacterial pathogen of A. thaliana, P. syringae pv. tabaci. We further found that these mutants were also defective in callose deposition. AtNHR2A and AtNHR2B fluorescent protein fusions transiently expressed in N. benthamiana localized predominantly to chloroplasts and a few unidentified dynamic puncta. RFP-AtNHR2A and AtNHR2B-GFP displayed overlapping signals in chloroplasts, indicating that the two proteins could interact, an idea supported by coimmunoprecipitation studies. We propose that AtNHR2A and AtNHR2B are new components of a chloroplast-signaling pathway that activates callose deposition to the cell wall in response to bacterial pathogens.


Assuntos
Arabidopsis/imunologia , Proteínas de Cloroplastos/metabolismo , Resistência à Doença , Glucanos/metabolismo , Doenças das Plantas/imunologia , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
16.
Plant Cell ; 24(1): 336-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22286136

RESUMO

In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis gox mutants have lower H(2)O(2) accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation with hypersensitive response-causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the production of H(2)O(2) during both gene-for-gene and nonhost resistance responses.


Assuntos
Oxirredutases do Álcool/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Nicotiana/enzimologia , Nicotiana/imunologia , Oxirredutases do Álcool/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/microbiologia
17.
RNA Biol ; 11(11): 1414-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25629686

RESUMO

Along with the canonical miRNA, distinct miRNA-like sequences called sibling miRNAs (sib-miRs) are generated from the same pre-miRNA. Among them, isomeric sequences featuring slight variations at the terminals, relative to the canonical miRNA, constitute a pool of isomeric sibling miRNAs (isomiRs). Despite the high prevalence of isomiRs in eukaryotes, their features and relevance remain elusive. In this study, we performed a comprehensive analysis of mature precursor miRNA (pre-miRNA) sequences from Arabidopsis to understand their features and regulatory targets. The influence of isomiR terminal heterogeneity in target binding was examined comprehensively. Our comprehensive analyses suggested a novel computational strategy that utilizes miRNA and its isomiRs to enhance the accuracy of their regulatory target prediction in Arabidopsis. A few targets are shared by several members of isomiRs; however, this phenomenon was not typical. Gene Ontology (GO) enrichment analysis showed that commonly targeted mRNAs were enriched for certain GO terms. Moreover, comparison of these commonly targeted genes with validated targets from published data demonstrated that the validated targets are bound by most isomiRs and not only the canonical miRNA. Furthermore, the biological role of isomiRs in target cleavage was supported by degradome data. Incorporating this finding, we predicted potential target genes of several miRNAs and confirmed them by experimental assays. This study proposes a novel strategy to improve the accuracy of predicting miRNA targets through combined use of miRNA with its isomiRs.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Precursores de RNA/genética , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Biologia Computacional/métodos , Bases de Dados Genéticas/estatística & dados numéricos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Dados de Sequência Molecular , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos , Homologia de Sequência de Aminoácidos
18.
BMC Plant Biol ; 13: 193, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24289810

RESUMO

BACKGROUND: Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. RESULTS: Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. CONCLUSIONS: In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance.


Assuntos
Adaptação Fisiológica/genética , Inativação Gênica , Genes de Plantas/genética , Ensaios de Triagem em Larga Escala/métodos , Nicotiana/genética , Vírus de Plantas/fisiologia , Estresse Fisiológico/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Estresse Oxidativo/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Pseudomonas syringae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Salinidade , Temperatura , Nicotiana/microbiologia , Nicotiana/fisiologia , Nicotiana/virologia , Xanthomonas campestris/fisiologia
19.
Plant Physiol ; 158(4): 1789-802, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22298683

RESUMO

Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts ß-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast.


Assuntos
Imunidade Inata/imunologia , Espaço Intracelular/metabolismo , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Pseudomonas syringae/fisiologia , Xanthomonas/fisiologia , Arabidopsis/enzimologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Eletrólitos , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Metiltransferases/metabolismo , Mutação/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/imunologia , Nicotiana/enzimologia , Nicotiana/microbiologia , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/imunologia
20.
Int J Mol Sci ; 14(5): 9497-513, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23644883

RESUMO

Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.


Assuntos
Aclimatação , Ascomicetos/fisiologia , Secas , Nicotiana/microbiologia , Nicotiana/fisiologia , Pseudomonas syringae/fisiologia , Estresse Fisiológico , Ácido Abscísico/farmacologia , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Ascomicetos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Pseudomonas syringae/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/citologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa