Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biochem Biophys Res Commun ; 635: 136-143, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36274363

RESUMO

Enhancer of zeste homolog 2 (EZH2), with EED and SUZ12, forms the polycomb repressive complex 2 (PRC2), which catalyzes histone H3 lysine 27 (H3K27) methylation. Canonically, EZH2 is well known to repress transcription by mediating H3K27 tri-methylation (H3K27me3) at target gene promoters. In this study, we report that EZH2 non-canonically regulates transcription of SET/TAF-Iß, known as a subunit of inhibitor of acetyltransferases (INHAT) complex and as a proto-oncogene. Importantly, transcriptional regulation of SET/TAF-Iß by EZH2 was independent of PRC2 and its methyltransferase activity. Moreover, EZH2 and SET/TAF-Iß levels were positively correlated, and both genes were highly expressed in various cancers including colon cancer as indicated by the analysis of TCGA database. Taken together, our study suggests the non-canonical role of EZH2 as a transcriptional activator of SET/TAF-Iß independent of methyltransferase function in colon cancer.


Assuntos
Neoplasias do Colo , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Acetiltransferases , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regulação da Expressão Gênica
2.
Biochem Biophys Res Commun ; 561: 120-127, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023776

RESUMO

Epigenetic dysregulation has been strongly implicated in carcinogenesis and is one of the mechanisms that contribute to the development of lung cancer. Using genome-wide CRISPR/Cas9 library screening, we showed SET domain-containing protein 1A (SETD1A) is an essential epigenetic modifier of the proliferation of NSCLC H1299 cells. Depletion of SETD1A strikingly inhibited the proliferation of NSCLC cells. IHC staining and bioinformatics showed that SETD1A is upregulated in lung cancer. Kaplan-Meier survival analysis indicated that high expression of SETD1A is associated with poor prognosis of patients with NSCLC. We revealed that loss of SETD1A inhibits DNA replication and induces replication stress accompanied by impaired fork progression. In addition, transcription of CDC7 and TOP1, which are involved in replication origin activation and fork progression, respectively, was significantly reduced by knockdown of SETD1A. Taken together, these findings demonstrated SETD1A is a critical epigenetic modifier of NSCLC cell proliferation by promoting the transcription of a subset of DNA replication-associated genes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Biologia Computacional/métodos , Replicação do DNA , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S
3.
Nucleic Acids Res ; 47(4): 1692-1705, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30535125

RESUMO

Posttranslational modifications of the Forkhead family transcription factor, FOXO1, have been known to have important regulatory implications in its diverse activities. Several types of modifications of FOXO1, including acetylation, phosphorylation, and ubiquitination, have been reported. However, lysine methylation of FOXO1 has not yet been identified. Here, we reported that FOXO1 is methylated by G9a at K273 residue in vitro and in vivo. Methylation of FOXO1 by G9a increased interaction between FOXO1 and a specific E3 ligase, SKP2, and decreased FOXO1 protein stability. In addition, G9a expression was increased by insulin and resulted in insulin-mediated FOXO1 degradation by K273 methylation. Tissue array analysis indicated that G9a was overexpressed and FOXO1 levels decreased in human colon cancer. Cell proliferation assays revealed that G9a-mediated FOXO1 methylation increased colon cancer cell proliferation. Fluorescence-activated cell sorting (FACS) analysis indicated that apoptosis rates were higher in the presence of FOXO1 than in FOXO1 knock-out cells. Furthermore, we found that G9a protein levels were elevated and FOXO1 protein levels were decreased in human colon cancer patients tissue samples. Here, we report that G9a specific inhibitor, BIX-01294, can regulate cell proliferation and apoptosis by inhibiting G9a-mediated FOXO1 methylation.


Assuntos
Neoplasias do Colo/genética , Proteína Forkhead Box O1/genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas Quinases Associadas a Fase S/genética , Apoptose/genética , Azepinas/farmacologia , Sistemas CRISPR-Cas/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Metilação de DNA/genética , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HCT116 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Masculino , Quinazolinas/farmacologia , Análise Serial de Tecidos , Ubiquitinação/genética
4.
Nucleic Acids Res ; 47(1): 184-196, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30357346

RESUMO

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Quebras de DNA de Cadeia Dupla , Metilação de DNA/genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Dano ao DNA/genética , Reparo do DNA/genética , Heterocromatina/genética , Humanos , Fosforilação , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Fase S/genética , Ubiquitina-Proteína Ligases
5.
Mol Cell ; 48(4): 572-86, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063525

RESUMO

Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Células MCF-7 , Metilação , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Especificidade por Substrato
6.
Biochem Biophys Res Commun ; 508(2): 576-582, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30514438

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most lethal cancer worldwide. Although gene mutations associated with HCC development have been intensively studied, how epigenetic factors specifically modulate the functional properties of HCC by regulating target gene expression is unclear. Here we demonstrated the overexpression of KDM3B in liver tissue of HCC patients using public RNA-seq data. Ablation of KDM3B by CRISPR/Cas9 retarded the cell cycle and proliferation of hepatocarcinoma HepG2 cells. Approximately 30% of KDM3B knockout cells exhibited mitotic spindle multipolarity as a chromosome instability (CIN) phenotype. RNA-seq analysis of KDM3B knockout revealed significantly down-regulated expression of cell cycle related genes, especially cell proliferation factor CDC123. Furthermore, the expression level of Cyclin D1 was reduced in KDM3B knockout by proteosomal degradation without any change in the expression of CCND1, which encodes Cyclin D1. The results implicate KDM3B as a crucial epigenetic factor in cell cycle regulation that manipulates chromatin dynamics and transcription in HCC, and identifies a potential gene therapy target for effective treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Genes cdc/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Histona Desmetilases com o Domínio Jumonji/análise , Histona Desmetilases com o Domínio Jumonji/genética , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Transcrição Gênica
7.
FASEB J ; 32(10): 5737-5750, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29763382

RESUMO

The methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominent in actively transcribed regions of the genome; however, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B, also known as FBXL10 and a member of the Jumonji C family of proteins known for its histone H3K36 demethylase activity, is a di- and trimethyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, which indicates that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase sirtuin-1 (SIRT1) from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.-Kang, J.-Y., Kim, J.-Y., Kim, K.-B., Park, J. W., Cho, H., Hahm, J. Y., Chae, Y.-C., Kim, D., Kook, H., Rhee, S., Ha, N.-C., Seo, S.-B. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing.


Assuntos
Cromatina/metabolismo , Proteínas F-Box/metabolismo , Inativação Gênica , Proteínas de Homeodomínio/biossíntese , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteína Meis1/biossíntese , Sirtuína 1/metabolismo , Transcrição Gênica , Cromatina/genética , Proteínas F-Box/genética , Proteínas de Homeodomínio/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células K562 , Proteína Meis1/genética , Sirtuína 1/genética
8.
Mol Cell ; 37(2): 183-95, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122401

RESUMO

Wnt family members play diverse roles in development and disease. Noncanonical Wnt ligands can inhibit canonical Wnt signaling depending on the cellular context; however, the underlying mechanism of this antagonism remains poorly understood. Here we identify a specific mechanism of orphan nuclear receptor RORalpha-mediated inhibition of canonical Wnt signaling in colon cancer. Wnt5a/PKCalpha-dependent phosphorylation on serine residue 35 of RORalpha is crucial to link RORalpha to Wnt/beta-catenin signaling, which exerts inhibitory function of the expression of Wnt/beta-catenin target genes. Intriguingly, there is a significant correlation of reduction of RORalpha phosphorylation in colorectal tumor cases compared to their normal counterpart, providing the clinical relevance of the findings. Our data provide evidence for a role of RORalpha, functioning at the crossroads between the canonical and the noncanonical Wnt signaling pathways, in mediating transrepression of the Wnt/beta-catenin target genes, thereby providing new approaches for the development of therapeutic agents for human cancers.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Proteína Quinase C-alfa/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fosforilação
9.
Mol Cell ; 39(1): 71-85, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603076

RESUMO

Lysine methylation within histones is crucial for transcriptional regulation and thus links chromatin states to biological outcomes. Although recent studies have extended lysine methylation to nonhistone proteins, underlying molecular mechanisms such as the upstream signaling cascade that induces lysine methylation and downstream target genes modulated by this modification have not been elucidated. Here, we show that Reptin, a chromatin-remodeling factor, is methylated at lysine 67 in hypoxic conditions by the methyltransferase G9a. Methylated Reptin binds to the promoters of a subset of hypoxia-responsive genes and negatively regulates transcription of these genes to modulate cellular responses to hypoxia.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Hipóxia Celular/genética , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nucleic Acids Res ; 43(7): 3509-23, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25765655

RESUMO

Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expression of G9a along with transcription factor YY1 specifically represses UHRF1 transcription during TPA-mediated leukemia cell differentiation. Using ChIP analysis, we found that UHRF1 was among the transcriptionally silenced genes during leukemia cell differentiation. Using a DNA methylation profiling array, we discovered that the UHRF1 promoter was hypomethylated in samples from leukemia patients, further supporting its overexpression and oncogenic activity. Finally, we showed that G9a regulates UHRF1-mediated H3K23 ubiquitination and proper DNA replication maintenance. Therefore, we propose that H3K9 HMTase G9a is a specific epigenetic regulator of UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Metilases de Modificação do DNA/metabolismo , Regulação da Expressão Gênica , Leucemia/patologia , Transcrição Gênica , Linhagem Celular , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Leucemia/genética , Ubiquitina-Proteína Ligases
11.
Biochem Biophys Res Commun ; 469(1): 22-28, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26607113

RESUMO

Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.


Assuntos
Aurora Quinase A/genética , Código das Histonas/genética , Histonas/genética , Neoplasias Experimentais/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Células HL-60 , Humanos , Fosforilação , Transcrição Gênica/genética
12.
Cell Mol Life Sci ; 71(14): 2731-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24305947

RESUMO

DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iß, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iß interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iß and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iß inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iß expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iß interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iß dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.


Assuntos
Antígenos Nucleares/fisiologia , Dano ao DNA , Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Ligação a DNA/fisiologia , Chaperonas de Histonas/fisiologia , Fatores de Transcrição/fisiologia , Acetilação , Antígenos Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Autoantígeno Ku , Modelos Genéticos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo
13.
Biosci Biotechnol Biochem ; 79(4): 532-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560918

RESUMO

TIP60 can act as a transcriptional activator or a repressor depending on the cellular context. However, little is known about the role of the chromodomain in the functional regulation of TIP60. In this study, we found that TIP60 interacted with H3K4me3 in response to TNF-α signaling. TIP60 bound to H3K4me3 at the promoters of the NF-κB target genes IL6 and IL8. Unlike the wild-type protein, a TIP60 chromodomain mutant did not localize to chromatin regions. Because TIP60 binds to histones with specific modifications and transcriptional regulators, we used a histone peptide assay to identify histone codes recognized by TIP60. TIP60 preferentially interacted with methylated or acetylated histone H3 and H4 peptides. Phosphorylation near a lysine residue significantly reduced the affinity of TIP60 for the modified histone peptides. Our findings suggest that TIP60 acts as a functional link between the histone code and transcriptional regulators.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Código Genético , Histona Acetiltransferases/genética , Transcrição Gênica , Cromatina/química , Células Hep G2 , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lisina Acetiltransferase 5 , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Análise Serial de Proteínas , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Transdução de Sinais , Ativação Transcricional , Fator de Necrose Tumoral alfa/farmacologia
15.
Nucleic Acids Res ; 40(1): 75-87, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911363

RESUMO

The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iß inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iß interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iß blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iß induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iß.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Apoptose , Linhagem Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Estresse Fisiológico , Ativação Transcricional , Proteína Supressora de Tumor p53/antagonistas & inibidores , Raios Ultravioleta
16.
Genes Genomics ; 46(7): 871-879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805168

RESUMO

BACKGROUND: Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE: We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS: RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS: In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION: TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.


Assuntos
Proliferação de Células , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases , Lisina Acetiltransferase 5 , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proliferação de Células/genética , Células HCT116 , Apoptose/genética , Regiões Promotoras Genéticas
17.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216089

RESUMO

The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases Ativadas por AMP/genética , Células HeLa , Fator 2 Relacionado a NF-E2/genética , Autofagia , Serina-Treonina Quinases TOR/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Sci Rep ; 13(1): 13132, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573395

RESUMO

DNA methylation is an epigenetic modification that regulates gene expression and plays an essential role in hematopoiesis. UHRF1 and DNMT1 are both crucial for regulating genome-wide maintenance of DNA methylation. Specifically, it is well known that hypermethylation is crucial characteristic of acute myeloid leukemia (AML). However, the mechanism underlying how DNA methylation regulates the differentiation of AML cells, including THP-1 is not fully elucidated. In this study, we report that UHRF1 or DNMT1 depletion enhances the phorbol-12-myristate-13-acetate (PMA)-induced differentiation of THP-1 cells. Transcriptome analysis and genome-wide methylation array results showed that depleting UHRF1 or DNMT1 induced changes that made THP-1 cells highly sensitive to PMA. Furthermore, knockdown of UHRF1 or DNMT1 impeded solid tumor formation in xenograft mouse model. These findings suggest that UHRF1 and DNMT1 play a pivotal role in regulating differentiation and proliferation of THP-1 cells and targeting these proteins may improve the efficiency of differentiation therapy in AML patients.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo , Células THP-1 , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Diferenciação Celular/genética , Hematopoese , Macrófagos/metabolismo
19.
BMB Rep ; 56(2): 120-125, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593106

RESUMO

Karyopherin-α3 (KPNA3), a karyopherin- α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMTrelated genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-ß or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-ß-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type. [BMB Reports 2023; 56(2): 120-125].


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , alfa Carioferinas , Feminino , Humanos , alfa Carioferinas/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
20.
NAR Cancer ; 5(3): zcad050, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37746636

RESUMO

SET/TAF-Iß, a subunit of the inhibitor of acetyltransferases (INHAT) complex, exhibits transcriptional repression activity by inhibiting histone acetylation. We find that SET/TAF-Iß regulates mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), which is involved in polycomb-mediated transcriptional repression, in HCT116 cells. In this report, we demonstrate that SET/TAF-Iß acts as an E2 ubiquitin-conjugating enzyme for PRC1-independent H2AK119ub. Furthermore, we identify that MIB1 is the E3 ligase partner for SET/TAF-Iß using LC-MS/MS and in vitro ubiquitination assays. Transcriptome analysis reveals that SET/TAF-Iß and MIB1 regulate the expression of genes related to DNA replication and cell cycle progression in HCT116 cells, and knockdown of either protein reduces proliferation of HCT116 cells by impeding cell cycle progression. Together, our study reveals a novel PRC1-independent epigenetic regulatory mechanism for H2AK119ub by SET/TAF-Iß and MIB1 in colon cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa