Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 21583-21590, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051486

RESUMO

Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts. Certain organic molecular thin films can be transitioned from initially prepared amorphous layers to large-scale crystalline films via abrupt thermal annealing. Ideally, these films crystallize as platelets with long-range-ordered domains on the scale of tens to hundreds of microns. However, other organic molecular thin films may instead crystallize as spherulites or resist crystallization entirely. Organic molecules that have the capability of transforming into a platelet morphology feature both high melting point (Tm) and crystallization driving force (ΔGc). In this work, we employed machine learning (ML) to identify candidate organic materials with the potential to crystallize into platelets by estimating the aforementioned thermal properties. Six organic molecules identified by the ML algorithm were experimentally evaluated; three crystallized as platelets, one crystallized as a spherulite, and two resisted thin film crystallization. These results demonstrate a successful application of ML in the scope of predicting thermal properties of organic molecules and reinforce the principles of Tm and ΔGc as metrics that aid in predicting the crystallization behavior of organic thin films.

2.
Soft Matter ; 18(43): 8331-8341, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36300535

RESUMO

Amorphous solid dispersions (ASDs) utilize the kinetic stability of the amorphous state to stabilize drug molecules within a glassy polymer matrix. Therefore, understanding the glassy-state stability of the polymer excipient is critical to ASD design and performance. Here, we investigated the physical aging of hydroxypropyl methylcellulose acetate succinate (HPMCAS), a commonly used polymer in ASD formulations. We found that HPMCAS exhibited conventional physical aging behavior when annealed near the glass transition temperature (Tg). In this scenario, structural recovery was facilitated by α-relaxation dynamics. However, when annealed well below Tg, a sub-α-relaxation process facilitated low-temperature physical aging in HPMCAS. Nevertheless, the physical aging rate exhibited no significant change up to 40 K below Tg, below which it exhibited a near monotonic decrease with decreasing temperature. Finally, infrared spectroscopy was employed to assess any effect of physical aging on the chemical structure of HPMCAS, which is known to be susceptible to degradation at temperatures 30 K above its Tg. Our results provide critical insights necessary to understand better the link between the stability of ASDs and physical aging of the glassy polymer matrix.


Assuntos
Excipientes , Metilcelulose , Estabilidade de Medicamentos , Metilcelulose/química , Excipientes/química , Polímeros/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa