Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 298: 113456, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364246

RESUMO

Sludge treatment is an integral part of faecal sludge management in non-sewered sanitation settings. Development of pyrolysis as a suitable sludge treatment method requires thorough knowledge about the properties and thermal decomposition mechanisms of the feedstock. This study aimed to improve the current lack of understanding concerning relevant sludge properties and their influence on the thermal decomposition characteristics. Major organic compounds (hemicellulose, cellulose, lignin, protein, oil and grease, other carbohydrates) were quantified in 30 faecal sludge samples taken from different sanitation technologies, providing the most comprehensive organic faecal sludge data set to date. This information was used to predict the sludge properties crucial to pyrolysis (calorific value, fixed carbon, volatile matter, carbon, hydrogen). Samples were then subjected to thermogravimetric analysis to delineate the influence of organic composition on thermal decomposition. Septic tanks showed lower median fractions of lignin (9.4%dwb) but higher oil and grease (10.7%dwb), compared with ventilated improved pit latrines (17.4%dwb and 4.6%dwb respectively) and urine diverting dry toilets (17.9%dwb and 4.7%dwb respectively). High fixed carbon fractions in lignin (45.1%dwb) and protein (18.8%dwb) suggested their importance for char formation, while oil and grease fully volatilised. For the first time, this study provided mechanistic insights into faecal sludge pyrolysis as a function of temperature and feedstock composition. Classification into the following three phases was proposed: decomposition of hemicellulose, cellulose, other carbohydrates, proteins and, partially, lignin (200-380 °C), continued decomposition of lignin and thermal cracking of oil and grease (380-500 °C) and continued carbonisation (>500 °C). The findings will facilitate the development and optimisation of faecal sludge pyrolysis, emphasising the importance of considering the organic composition of the feedstock.


Assuntos
Pirólise , Esgotos , Fezes , Saneamento , Banheiros
2.
J Environ Manage ; 261: 110267, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148321

RESUMO

Drying is one of the treatment techniques used for the dual purpose of safe disposal and energy recovery of faecal sludge (FS). Limited data are available regarding the FS drying process. In this paper the drying properties of FS were investigated using samples from ventilated improved pit (VIP) latrines and urine diversion dry toilets (UDDT) and an anaerobic baffle reactor (ABR) from a decentralized wastewater treatment systems. Moisture content, total solids content, volatile solids content, water activity, coupled thermogravimetry & differential thermal analysis (TGA-DTA) and calorific value tests were used to characterize FS drying. Drying kinetics and water activity measured at different moisture content during drying (100 °C) were similar for the samples from different on-site sanitation facilities. Experimental heat of drying results revealed that FS requires two to three times that of the latent heat of vaporization of water for drying. Drying temperature was more significant than the sludge source in determining the final volatile solids content of the dried samples. This was reinforced by the dynamic TGA that showed considerable thermal degradation (2-11% dry solid mass) near 200 °C. Below 200 C, the calorific value of the dried samples exhibited no significant difference. The average calorific values of VIP, UDDT and ABR samples at 100 °C were 14.78, 15.70, 17.26 MJ/kg dry solid, respectively. This suggests that the fuel value of FS from the aforementioned sanitation facilities will not be significantly affected by drying temperature below 200 °C. Based on this study, the most suitable temperature for drying of FS for a solid fuel application was found to be 150 °C.


Assuntos
Saneamento , Esgotos , Dessecação , Fezes , Águas Residuárias
3.
Gates Open Res ; 4: 67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34056550

RESUMO

Background: Drying is an important step for the thermochemical conversion of solid fuels, but it is energy-intensive for treating highly moist materials. Methods: To inform the thermal treatment of faecal sludge (FS), this study investigated the drying characteristics and kinetics of various faecal wastes using thermogravimetric analysis and isothermal heating conditions. Results: The findings show that FS from anaerobic baffled reactor (ABR) and ventilated improved pit (VIP) latrines exhibit similar drying characteristics, with maximum drying rates at 0.04 mg/min during a constant rate period that is followed by a distinct falling rate period. On the contrary, fresh human faeces (HF) and FS from urine-diverting dry toilets (UDDT) exhibited a falling rate period regime with no prior or intermittent constant rate periods. The absence of constant rate period in these samples suggested limited amounts of unbound water that can be removed by dewatering and vice versa for VIP and ABR faecal sludges. The activation energies and effective moisture diffusivity for the sludges varied from 20 to 30 kJ/mol and 3∙10 -7 to 1∙10 -5 m 2/s at 55°C and sludge thickness of 3mm. The Page model was consistent in modelling the different sludges across all temperatures. Conclusions: These results presented in this study can inform the design and development of innovative drying methods for FS treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa