Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Genom ; 2(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35720974

RESUMO

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

2.
Cancer Discov ; 11(5): 1082-1099, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408242

RESUMO

Effective data sharing is key to accelerating research to improve diagnostic precision, treatment efficacy, and long-term survival in pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads from St. Jude's prospective clinical genomics programs. Three interconnected apps within the ecosystem-Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community-enable simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric cancer subtypes. SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a knowledgebase of published data contributed by the global pediatric cancer community.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Anemia Falciforme/genética , Computação em Nuvem , Genômica , Disseminação de Informação , Neoplasias/genética , Criança , Ecossistema , Hospitais Pediátricos , Humanos
3.
Sci Transl Med ; 8(335): 335ps10, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27099173

RESUMO

Next-generation sequencing technologies are fueling a wave of new diagnostic tests. Progress on a key set of nine research challenge areas will help generate the knowledge required to advance effectively these diagnostics to the clinic.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Informática/métodos , Polimorfismo de Nucleotídeo Único/genética , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa