Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613664

RESUMO

Silica (either crystalline or amorphous) is widely used for different applications and its toxicological assessment depends on its characteristics and intended use. As sustained inflammation induced by crystalline silica is at the root of silicosis, investigating the inflammatory effects induced by amorphous silicas and their persistence is needed. For the development of new grades of synthetic amorphous silicas, it is also desirable to be able to understand better the factors underlying potential adverse effects. Therefore, we used an optimized in vitro macrophage system to investigate the effects of amorphous silicas, and their persistence. By using different amorphous silicas, we demonstrated that the main driver for the adverse effects is a low size of the overall particle/agglomerate; the second driver being a low size of the primary particle. We also demonstrated that the effects were transient. By using silicon dosage in cells, we showed that the transient effects are coupled with a decrease of intracellular silicon levels over time after exposure. To further investigate this phenomenon, a mild enzymatic cell lysis allowed us to show that amorphous silicas are degraded in macrophages over time, explaining the decrease in silicon content and thus the transiency of the effects of amorphous silicas on macrophages.


Assuntos
Dióxido de Silício , Silicose , Humanos , Silício , Macrófagos
2.
Molecules ; 27(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35566380

RESUMO

To develop new therapeutic molecules, it is essential to understand the biological effects and targets of clinically relevant compounds. In this article, we describe the extraction and characterization of two alkaloids from the roots of Isolona hexaloba-curine and guattegaumerine. The effect of these alkaloids on the multidrug efflux pump ABCB1 (MDR1/P-Glycoprotein) and their antiproliferative properties were studied. Compared to verapamil, a widely used inhibitor of P-gp, curine and guattegaumerine were found to be weak inhibitors of MDR1/P-Glycoprotein. The highest inhibition of efflux produced by verapamil disappeared in the presence of curine or guattegaumerine as competitors, and the most pronounced effect was achieved with curine. Altogether, this work has provided new insights into the biological effects of these alkaloids on the rat Mdr1b P-gp efflux mechanism and would be beneficial in the design of potent P-gp inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Benzilisoquinolinas , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Ácido Glicocólico , Isoquinolinas , Ratos , Rodaminas , Verapamil/farmacologia
4.
NanoImpact ; 32: 100483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734653

RESUMO

A roadmap was developed to strengthen standardisation activities for risk governance of nanotechnology. Its baseline is the available standardised and harmonised methods for nanotechnology developed by the International Organization for Standardization (ISO), the European Committee for Standardization (CEN), and the Organisation for Economic Co-operation and Development (OECD). In order to identify improvements and needs for new themes in standardisation work, an analysis of the state-of-the-art concepts and interpretations of risk governance of nanotechnology was performed. Eleven overall areas of action were identified, each including a subset of specific topics. Themes addressed include physical chemical characterisation, assessment of hazard, exposure, risk and socio-economic factors, as well as education & training and social dialogue. This has been visualised in a standardisation roadmap spanning a timeframe of ten years and including key outcomes and highlights of the analysis. Furthermore, the roadmap indicates potential areas of action for harmonisation and standardisation (H&S) for nanomaterials and nanotechnology. It also includes an evaluation of the current level (limited, moderate, intense) of ongoing H&S activities and indicates the time horizon for the different areas of action. As the identified areas differ in their state of development, the number and type of actions varied widely amongst the different actions towards achieving standardisation. Thus, priority areas were also identified. The overall objective of these actions is to strengthen risk governance towards a safe use of nanomaterials and nano-related products. Though not explicitly addressed, risk-based legislation and policies are supported via the proposed H&S actions.


Assuntos
Nanoestruturas , Nanotecnologia , Fatores Econômicos , Escolaridade , Padrões de Referência
5.
Ann Occup Hyg ; 56(5): 622-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22378843

RESUMO

Silica mesoporous nanoparticles have been recently selected for a wide range of applications from electronics to medicine due to their intrinsic properties. Among medical applications, drug delivery using SiO(2) nanoparticles by oral route is under study. Major benefits are expected including higher specificity and sensitivity together with side effect reduction. Since literature shows that very complex and unexpected interactions could occur between nanomaterials and biological systems, one critical issue is to control the nanoparticle cytotoxicity/genotoxicity for normal tissues and specially stomach and intestine when oral route is considered. The aim of the work is to study the cytotoxicity and genotoxicity of SiO(2) nanoparticles on HT29 human intestine cell line, using conventional and innovative methodologies, for measuring cell viability and proliferation, global metabolism, genotoxicity, and nanoparticles uptake. Core-dye doped SiO(2) nanoparticles of 25 and 100 nm were specifically synthesized to track nanoparticles incorporation by confocal and video microscopy. Besides conventional approaches (sulforhodamine B, flow cytometry, and γ-H2Ax foci), we have performed a real-time monitoring of cell proliferation using an impedance-based system which ensure no interference between measures and nanoparticles physicochemical characteristics. Overall, our results showed that SiO(2)-25nm and SiO(2)-100nm induced a rather limited cytotoxic and genotoxic effects on HT-29 cells after a 24 h exposure. However, regarding cell viability and genotoxicity, inverse dose-dependent relationships were observed for SiO(2)-100nm nanoparticles. In conclusion, it seems that the higher the dose of SiO(2)-100nm, the lower the cytotoxic/genotoxic effects, data that well illustrate the complexity in identifying and understanding the hazards of nanoparticles for human health.


Assuntos
Mutagênicos/toxicidade , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Impedância Elétrica , Poluentes Ambientais/toxicidade , Excipientes/toxicidade , Citometria de Fluxo , Células HT29 , Histonas/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Microscopia Confocal , Testes de Mutagenicidade/métodos , Tamanho da Partícula , Fosforilação , Coloração e Rotulagem/métodos , Estatísticas não Paramétricas
6.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564134

RESUMO

Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.

7.
Nanotoxicology ; 15(8): 1016-1034, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242099

RESUMO

The ECETOC NanoApp was developed to support industry in the registration of sets of nanoforms, as well as regulators in the evaluation of these registration dossiers. The ECETOC NanoApp uses a systematic approach to create and justify sets of similar nanoforms, following the ECHA guidance in a transparent and evidence-based manner. The rational and decision rules behind the ECETOC NanoApp are described in detail in "Janer, G., R. Landsiedel, and W. Wohlleben. 2021. [Rationale and Decision Rules Behind the ECETOC NanoApp to Support Registration of Sets of Similar Nanoforms within REACH. Nanotoxicology 15 (2): 145-122. https://doi.org/10.1080/17435390.2020.1842933]". The decision criteria apply to human health and environmental hazards and risks. Here, we focus mostly on human health hazards; the decision rules are applied to a series of case studies, each consisting of real nanoforms: two barium sulfate nanoforms, four colloidal silica nanoforms, eight ceria nanoforms, and four copper phthalocyanine nanoforms. For each of them, we show step by step how the ECETOC NanoApp rules are applied. The cases include nanoforms that are justified as members of the same set of similar nanoforms based on sufficient similarity of their intrinsic properties (Tier 1). They also include other nanoforms with a relatively high (but insufficient) similarity of intrinsic properties; their similarity could be justified by functional properties (Tier 2). The case studies also include nanoforms that are concluded not to belong to the same set of similar nanoforms. These outcomes of the NanoApp were overall consistent (sometimes conservative) with available in vivo data. We also noted that datasets for various nanoforms were limited and use of the NanoApp may require the generation of data relevant to the decision criteria.


Assuntos
Indústrias , Humanos , Medição de Risco
8.
Front Toxicol ; 3: 780778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295137

RESUMO

Immunotoxicology sensu lato comprises not only toxicity toward immune cells, but also biological reactions from immune cells exposed to toxicants, reactions that may have deleterious effects at the organismal level. Within this wide frame, a specific case of interest is represented by the response of macrophages to particulate materials, with the epitome examples of asbestos and crystalline silica. For such toxicants that are both persistent and often encountered in an occupational setting, i.e. at low but repeated doses, there is a need for in vitro systems that can take into account these two parameters. Currently, most in vitro systems are used in an acute exposure mode, i.e., with a single dose and a readout made shortly if not immediately after exposure. We describe here how adequate changes of the culture methods applied to the murine macrophage cell line J774A.1 enable longer periods of culture (several days), which represents a first opportunity to address the persistence and dose-rate issues. To respond to this, the protocol uses a reduction in the concentration of the animal serum used for cell culture, as well as a switch from fetal to adult serum, which is less rich in proliferation factors. By doing so, we have considerably reduced cell proliferation, which is a problem with cell lines when they are supposed to represent slowly-dividing cells such as resident macrophages. We also succeeded in maintaining the differentiated functions of macrophages, such as phagocytosis or inflammatory responses, over the whole culture period. Furthermore, the presence of serum, even at low concentrations, provides excellent cell viability and keeps the presence of a protein corona on particulate materials, a feature that is known to strongly modulate their effects on cells and is lost in serum-free culture. Besides data showing the impact of these conditions on macrophages cell line cultures, illustrative examples are shown on silica- and cobalt-based pigments.

10.
mBio ; 6(4)2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26307165

RESUMO

UNLABELLED: Considerable evidence exists that bacteria detect eukaryotic communication molecules and modify their virulence accordingly. In previous studies, it has been demonstrated that the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa can detect the human hormones brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) at micromolar concentrations. In response, the bacterium modifies its behavior to adapt to the host physiology, increasing its overall virulence. The possibility of identifying the bacterial sensor for these hormones and interfering with this sensing mechanism offers an exciting opportunity to directly affect the infection process. Here, we show that BNP and CNP strongly decrease P. aeruginosa biofilm formation. Isatin, an antagonist of human natriuretic peptide receptors (NPR), prevents this effect. Furthermore, the human NPR-C receptor agonist cANF(4-23) mimics the effects of natriuretic peptides on P. aeruginosa, while sANP, the NPR-A receptor agonist, appears to be weakly active. We show in silico that NPR-C, a preferential CNP receptor, and the P. aeruginosa protein AmiC have similar three-dimensional (3D) structures and that both CNP and isatin bind to AmiC. We demonstrate that CNP acts as an AmiC agonist, enhancing the expression of the ami operon in P. aeruginosa. Binding of CNP and NPR-C agonists to AmiC was confirmed by microscale thermophoresis. Finally, using an amiC mutant strain, we demonstrated that AmiC is essential for CNP effects on biofilm formation. In conclusion, the AmiC bacterial sensor possesses structural and pharmacological profiles similar to those of the human NPR-C receptor and appears to be a bacterial receptor for human hormones that enables P. aeruginosa to modulate biofilm expression. IMPORTANCE: The bacterium Pseudomonas aeruginosa is a highly dangerous opportunist pathogen for immunocompromised hosts, especially cystic fibrosis patients. The sites of P. aeruginosa infection are varied, with predominance in the human lung, in which bacteria are in contact with host molecular messengers such as hormones. The C-type natriuretic peptide (CNP), a hormone produced by lung cells, has been described as a bacterial virulence enhancer. In this study, we showed that the CNP hormone counteracts P. aeruginosa biofilm formation and we identified the bacterial protein AmiC as the sensor involved in the CNP effects. We showed that AmiC could bind specifically CNP. These results show for the first time that a human hormone could be sensed by bacteria through a specific protein, which is an ortholog of the human receptor NPR-C. The bacterium would be able to modify its lifestyle by favoring virulence factor production while reducing biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fator Natriurético Atrial/farmacologia , Biofilmes/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Humanos , Conformação Molecular , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Encefálico/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Receptores de Peptídeos/antagonistas & inibidores , Fatores de Virulência/química , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa