Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 161: 105123, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822867

RESUMO

Breast cancer (BC) is the most common cancer in women and, among different BC subtypes, triple negative (TN) and human epidermal growth factor receptor 2 (HER2)-positive BCs have the worst prognosis. In this study, we investigated the anticancer activity of the root ethanolic and hexane extracts from Lithospermum erythrorhizon, a traditional Chinese herbal medicine known also as tzu ts'ao or tzu-ken, against in vitro and in vivo models of TNBC and HER2-positive BC. Treatment with L. erythrorhizon root extracts resulted in a dose-dependent inhibition of BC cell viability and in a significant reduction of the growth of TNBC cells transplanted in syngeneic mice. Acetylshikonin, a naphthoquinone, was identified as the main bioactive component in extracts and was responsible for the observed antitumor activity, being able to decrease BC cell viability and to interfere with autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Acetylshikonin anticancer effect depends on its ability to act as a potent inhibitor of dihydrofolate reductase (DHFR), to down-regulate key mediators governing cancer growth and progression, such as HER2, Src and STAT3, and to induce apoptosis by caspase-3 activation. The accumulation of acetylshikonin in blood samples as well as in brain, kidney, liver and tumor tissues was also investigated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) highlighting that L. erythrorhizon treatment is effective in delivering the active compound into the target tissues. These results provide evidence that L. erythrorhizon extract and in particular its main component acetylshikonin are effective against aggressive BC subtypes and reveal new acetylshikonin mechanisms of action.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/prevenção & controle , Antagonistas do Ácido Fólico/farmacologia , Lithospermum , Receptor ErbB-2/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Antraquinonas/isolamento & purificação , Antraquinonas/farmacocinética , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antagonistas do Ácido Fólico/isolamento & purificação , Antagonistas do Ácido Fólico/farmacocinética , Humanos , Lithospermum/química , Camundongos Transgênicos , Raízes de Plantas , Receptor ErbB-2/genética , Transdução de Sinais , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Cell Dev Biol ; 8: 146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258031

RESUMO

The STRIPAK complex has been linked to a variety of biological processes taking place during embryogenesis and development, but its role in cancer has only just started to be defined. Here, we expand on previous work indicating a role for the scaffolding protein STRIP1 in cancer cell migration and metastasis. We show that cell cycle arrest and decreased proliferation are seen upon loss of STRIP1 in MDA-MB-231 cells due to the induction of cyclin dependent kinase inhibitors, including p21 and p27. We demonstrate that p21 and p27 induction is observed in a subpopulation of cells having low DNA damage response and that the p21high/γH2AXlow ratio within single cells can be rescued by depleting MST3&4 kinases. While the loss of STRIP1 decreases cell proliferation and tumor growth, cells treated with low dosage of chemotherapeutics in vitro paradoxically escape therapy-induced senescence and begin to proliferate after recovery. This corroborates with already known research on the dual role of p21 and indicates that STRIP1 also plays a contradictory role in breast cancer, suppressing tumor growth, but once treated with chemotherapeutics, allowing for possible recurrence and decreased patient survival.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa