Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemistry ; : e202400669, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924194

RESUMO

Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.

2.
Chem Rev ; 120(2): 1250-1349, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31577439

RESUMO

The support plays an important role for supported metal catalysts by positioning itself as a macromolecular ligand, which conditions the nature of the active site and contributes indirectly but also sometimes directly to the reactivity. Metal species such as nanoparticles, clusters, or single atoms can be deposited on carbon materials for various catalytic reactions. All the carbon materials used as catalyst support constitute a large family of compounds that can vary both at textural and at structural levels. Today, the recent developments of well-controlled synthesis methodologies, advanced characterization techniques, and modeling tools allow one to correlate the relationships between metal/support/reactant at the molecular level. Based on these considerations, in this Review article, we wish to provide some answers to the question "How and why anchoring metal nanoparticles, clusters, or single atoms on carbon materials for catalysis?". To do this, we will rely on both experimental and theoretical studies. We will first analyze what sites are available on the surface of a carbon support for the anchoring of the active phase. Then, we will describe some important effects in catalysis inherent to the presence of a carbon-type support (metal-support interaction, confinement, spillover, and surface functional group effects). These effects will be commented on by putting into perspective catalytic results obtained in numerous reactions of thermal catalysis, electrocatalysis, or photocatalysis.

3.
J Environ Sci (China) ; 92: 52-68, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430133

RESUMO

Photoactive aluminum doped ZnO (AlZnO) was synthesized by sol-gel method. After that, AlZnO photocatalyst was deposited on five carbon-based materials (CBMs) using ultrasonic route followed by solid-state mixing using ball mill. The CBMs used were polyaniline (PANI), carbon nitride (CN), carbon nanotubes (CNT), graphene (G), and carbon nanofibers (CNF). The crystal phases, elemental compositions, morphological, and optical properties of the AlZnO@CBMs composites were investigated. Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency (100% removal) and photocatalytic stability (three cycles) for 50 µmol/L Methylene Blue (MB) contaminated water after 60 min irradiation in visible light at pH 6.5, 0.7% H2O2, and 5 g/L inorganic salts. Under optimum conditions, AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB, Methyl Orange (MO), Astrazone Blue FRR (BB 69), and Rhodamine B (RhB) dyes under dark, ultraviolet, visible, and direct sunlight. For mixed dyestuffs, the AlZnO@G achieved the highest dye sorption capacity (60.91 µmol dye stuffs/g) with kinetic rate 8.22 × 10-3 min-1 in 90 min via multi-layer physisorption (Freundlich isotherm) on graphene sheet. In additions, AlZnO@CN offered the highest photo-kinetic rate (Kphoto) of ~54.1 × 10-3 min-1 (93.8% after 60 min) under direct sunlight. Furthermore, the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway. Owing to their superior performance, AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.


Assuntos
Nanotubos de Carbono , Águas Residuárias , Catálise , Peróxido de Hidrogênio , Luz Solar , Têxteis
4.
Langmuir ; 34(22): 6376-6387, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768921

RESUMO

The oxygen reduction reaction (ORR) has a crucial function as the cathode reaction in energy-converting systems, such as fuel cells (FCs), which contributes to a sustainable energy supply. However, the current use of precious Pt-based electrocatalysts (ECs) is a major drawback for the economic viability of fuel cells. Hence, it is urgent to develop cost-effective and efficient electrocatalysts (ECs) without noble metals to substitute the Pt-based ECs. Herein, we report the preparation and application as ORR electrocatalysts of four new nanocomposites based on sandwich-type phosphotungstate (TBA)7H3[Co4(H2O)2(PW9O34)2] (TBA-Co4(PW9)2) immobilized onto different carbon nanomaterials [single-walled carbon nanotubes (SWCNT), graphene flakes (GF), carbon nanotubes doped with nitrogen (N-CNT), and nitrogen-doped few layer graphene (N-FLG)]. In alkaline medium, the four nanocomposites studied presented comparable onset potentials (0.77-0.90 V vs RHE), which are similar to that observed for Pt/C (0.91 V vs RHE). Higher diffusion-limiting current densities ( jL,0.26V,1600 rpm = -168.3 mA cm-2 mg-1) were obtained for Co4(PW9)2@N-CNT, as compared to Pt/C electrode -130.0 mA cm-2 mg-1) and the other ECs (-45.0, -50.7, and -87.5 mA cm-2 mg-1 for Co4(PW9)2@SWCNT, Co4(PW9)2@GF, and Co4(PW9)2@N-FLG, respectively). All the Co4(PW9)2@CM ECs showed selectivity toward direct O2 reduction to water with the exception of Co4(PW9)2@GF where a mixture of the 2- and 4-electron mechanisms is observed. Furthermore, low Tafel slopes were obtained for all the nanocomposites (68-96 mV dec-1). Co4(PW9)2@CM ECs also showed excellent tolerance to methanol with no significant changes in current density, in contrast to Pt/C (decrease of ≈59% after methanol addition) and good long-term electrochemical stability with current retentions between 75 and 84%.

5.
J Environ Manage ; 210: 307-315, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29358125

RESUMO

A new in-situ cationic polymerization was performed to synthesize a cross-linked (91%) polystyrene (PS) organogel through tetrachloroethylene radiolysis assisted by 60Co gamma rays. Hoernschemeyer diagram and swelling capacity test show a better selectivity of PS organogel to chlorinated molecules compared to ester, hydrocarbons and alcohols organic molecules by 80-184 folds. Response surface modeling (RSM) of CPs (2,4,6-trichlorophenol) sorption from artificial wastewater confirm superiority of PS organogel to absorb 1746 µmol CPs/g (∼345 mg CPs/g) at broad pH (4-10) and temperature (25-45 °C). Based on ANOVA statistic, simulated CPs absorption model onto PS organogel was successfully developed, with accuracy of prediction of R2≈ RAdj2 of 0.991-0.995 and lower coefficient of variation of 2.73% with Fmodel of 611.4 at p < .0001. Particularly, the usage of PS organogel for petroleum wastewater reclamation exhibited higher absorption affinities for all the organic contaminants especially for CPs (>99%) by non-covalent and/or dispersive interaction mechanisms with a well-term reusability and good stability up to 5 cycles.


Assuntos
Poliestirenos/química , Purificação da Água , Cátions , Clorofenóis , Resíduos Industriais , Indústria de Petróleo e Gás , Polimerização , Águas Residuárias
6.
Angew Chem Int Ed Engl ; 57(33): 10579-10583, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29893037

RESUMO

The Fischer-Tropsch synthesis (FTS) is a structure-sensitive exothermic reaction that enables catalytic transformation of syngas to high quality liquid fuels. Now, monolithic cobalt-based heterogeneous catalysts were elaborated through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst was tested for Fischer-Tropsch synthesis in a fixed-bed reactor, showing stability and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2 -Al2 O3 reference catalyst under the same conditions.

7.
Chemistry ; 23(54): 13379-13386, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28543998

RESUMO

The C66 (COOH)12 hexa-adduct has been successfully used as a building block to construct carboxylate bridged 3D networks with very homogeneous sub-1.8 nm ruthenium nanoparticles. The obtained nanostructures are active in nitrobenzene selective hydrogenation.

8.
Chemistry ; 21(48): 17437-44, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26471723

RESUMO

The confinement of air-protected metallic magnetic nanoparticles in the inner cavity of carbon nanotubes (CNTs) should offer an interesting perspective for biomedical applications or for controlling CNT alignment in composites. Because the direct confinement of polymer-precoated nanoparticles in CNTs could be restricted by diffusion limitations, we developed a process based on: 1) the confinement of iron nanoparticles surface-modified with an iron polymerization catalyst in the cavity of CNTs and 2) the polymerization of isoprene on the confined nanoparticles. The resulting material consists in CNT-confined iron nanoparticles coated with a polyisoprene air barrier. This approach constitutes a proof of concept for the development of smart materials for use in medicine or composites.


Assuntos
Butadienos/química , Hemiterpenos/química , Ferro/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Pentanos/química , Catálise , Magnetismo , Polimerização
9.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836313

RESUMO

The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO2 (Co/TiO2) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis. Although it is widely acknowledged that Co/TiO2 is restructured during the reaction process, little is known about the impact of the specific gas phase environment at the material's surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate in situ Co particles supported on pure and NaBH4-modified TiO2 under H2, O2, and CO2:H2 gas atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for simultaneous probing of the chemical composition of surface and subsurface layers, is one of the study's unique features. It is shown that under H2, cobalt particles are encapsulated below a stoichiometric TiO2 layer. This arrangement is preserved under CO2 hydrogenation conditions (i.e., CO2:H2), but changes rapidly upon exposure to O2. The pretreatment of the TiO2 support with NaBH4 affects the surface mobility and prevents TiO2 spillover onto Co particles.

10.
Nanoscale ; 15(4): 1739-1753, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36598381

RESUMO

2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.

11.
Chemphyschem ; 13(16): 3622-31, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22887177

RESUMO

The self-assembly and induced supramolecular chirality of meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) on both single-wall (SWCNT) and multiwall carbon nanotubes (MWCNT) are investigated. Under mild pH conditions (pH 3), TSPP forms aggregates when CNTs are dispersed in an aqueous solution containing positively charged polyelectrolytes such as poly-L-lysine (PLL) or poly(allylamine hydrochloride) (PAH). Evidence for the geometry of the porphyrin aggregates is obtained from absorption spectra, whereby the fingerprints of J- and H-aggregates are clearly seen only in the presence of smaller-diameter nanotubes. J-aggregates are better stabilized with PLL, whereas in the presence of PAH mainly H-aggregates prevail. Excited-state interactions within these nanohybrids are studied by steady-state and time-resolved fluorescence. The porphyrin emission intensity in the nanohybrid solution is significantly quenched compared to that of TSPP alone, and this implies strong electronic interaction between CNTs and porphyrin molecules. Fluorescence lifetime imaging microscopy (FLIM) further supports that porphyrin arrays are associated with the MWCNT sidewalls wrapped in PLL. In the case of the SWCNT hybrid, spherical structures associated with longer fluorescence lifetime appeared after one week, indicative of H-aggregates of TSPP. The latter are the result of π-π stacking of porphyrin units on neighboring nanotubes facilitated by the strong tendency of these nanotubes to interact with each other. These results highlight the importance of optimum dimensions and surface-area architectures of CNTs in the control/stability of the porphyrin aggregates with promising properties for light harvesting.

12.
Inorg Chem ; 51(16): 8670-85, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22845464

RESUMO

The neutral rhodium(I) square-planar complexes [RhX(CO)(2)(L)] [X = Cl (3), I (4)] bearing a nitrogen-containing ligand L [diethylamine (a), triethylamine (b), imidazole (c), 1-methylimidazole (d), pyrazole (e), 1-methylpyrazole (f), 3,5-dimethylpyrazole (g)] are straightforwardly obtained from L and [Rh(µ-X)(CO)(2)](2) [X = Cl (1), I (2)] precursors. The synthesis is extended to the diethylsulfide ligand h for 3h and 4h. According to the CO stretching frequency of 3 and 4, the ranking of the electronic density on the rhodium center follows the order b > a ≈ d > c > g > f ≈ h > e. The X-ray molecular structures of 3a, 3d-3f, 4a, and 4d-4f were determined. Results from variable-temperature (1)H and (13)C{(1)H} NMR experiments suggest a fluxional associative ligand exchange for 4c-4h and a supplementary hydrogen-exchange process in 4e and 4g. The oxidative addition reaction of CH(3)I to complexes 4c-4g affords the neutral dimeric iodo-bridged acetylrhodium(III) complexes [RhI(µ-I)(COCH(3))(CO)(L)](2) (6c-6g) in very good isolated yields, whereas 4a gives a mixture of neutral 6a and dianionic [RhI(2)(µ-I)(COCH(3))(CO)][NHMeEt(2)](2) and 4h exclusively provides the analogue dianionic complex with [SMeEt(2)](+) as the counterion. X-ray molecular structures for 6d(2) and 6e reveal that the two apical CO ligands are in mutual cis positions, as are the two apical d and e ligands, whereas isomer 6d(1) is centrosymmetric. Further reactions of 6d and 6e with CO or ligand e gave quantitatively the monomeric complexes [RhI(2)(COCH(3))(CO)(2)(d)] (7d) and [RhI(2)(COCH(3))(CO)(e)(2)] (8e), respectively, as confirmed by their X-ray structures. The initial rate of CH(3)I oxidative addition to 4 as determined by IR monitoring is dependent on the nature of the nitrogen-containing ligand. For 4a and 4h, reaction rates similar to those of the well-known rhodium anionic [RhI(2)(CO)(2)](-) species are observed and are consistent with the formation of this intermediate species through methylation of the a and h ligands. The reaction rates are reduced significantly when using imidazole and pyrazole ligands and involve the direct oxidative addition of CH(3)I to the neutral complexes 4c-4g. Complexes 4c and 4d react around 5-10 times faster than 4e-4g mainly because of electronic effects. The lowest reactivity of 4f toward CH(3)I is attributed to the steric effect of the coordinated ligand, as supported by the X-ray structure.

13.
Inorg Chem ; 51(1): 4-6, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22122231

RESUMO

For the last step of rhodium-catalyzed methanol carbonylation, high-pressure NMR, and kinetic and experimental data supported by density functional theory calculations are consistent with substitution of I(-) by an AcO(-) ligand on the [RhI(3)(COCH(3))(CO)(2)](-) species followed by reductive elimination of acetic anhydride, which immediately reacts with water to afford acetic acid.

14.
ChemSusChem ; 15(19): e202200916, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880580

RESUMO

The transition from batch catalytic processes to continuous flow processes requires highly active and stable catalysts that still need to be developed. The preparation and characterization of catalysts where palladium single atoms and nanoparticles are simultaneously present on carbon nanotubes were recently reported by us. These catalysts are considerably more active than commercial or previously described catalysts for the liquid phase hydrogenation of terpenes. Herein is shown that under solvent-free conditions, squalene (SQE) could be converted into squalane (SQA,>98 %) using only 300 ppm of Pd in less than 1.4 h at 20 bar H2 and 120 °C. Catalyst stability was assessed in a lab-scale flow reactor, and long-term experiments led to turnover number (TON) higher than 300000 without any detectable loss in the activity. Then, the implementation of this catalyst in a commercial intensified continuous-flow milli-reactor pilot was achieved. High purity SQA (>98 %) could be obtained by continuous hydrogenation of solvent-free SQE at 180 °C and 30 bar H2 with a contact time below 15 min. A production capacity of 3.6 kg per day of SQA could be obtained with an effective reactor volume (VR ) of 43.2 mL for this complex 3 phase reaction. Large-scale production can now be foreseen thanks to seamless scale-up provided by the continuous flow pilot supplier.


Assuntos
Nanotubos de Carbono , Paládio , Catálise , Hidrogenação , Solventes , Esqualeno
15.
Chemistry ; 17(41): 11467-77, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21922575

RESUMO

The nitric acid oxidation of multiwalled carbon nanotubes leading to surface carboxylic groups has been investigated both experimentally and theoretically. The experimental results show that such a reaction involves the initial rapid formation of carbonyl groups, which are then transformed into phenol or carboxylic groups. At room temperature, this reaction takes place on the most reactive carbon atoms. At higher temperatures a different mechanism would operate, as evidenced by the difference in activation energies. Experimental data can be partially related to first-principles calculations, showing a multistep functionalization mechanism. The theoretical aspects of the present article have led us to propose the most efficient pathway leading to carboxylic acid functional groups on the surface. Starting from mono-vacancies, it ends up with the synergistic formation of dangling -COOH groups and the enlargement of the vacancies.

16.
Inorg Chem ; 50(17): 8654-62, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21815613

RESUMO

Gold nanoparticles (Au NPs) have been synthesized using simple thermolysis, whether from the mesophase or from toluene solutions, of mesogenic alkynyl-isocyanide gold complexes [Au(C≡C-C(6)H(4)-C(m)H(2m+1))(C≡N-C(6)H(4)-O-C(n)H(2n+1))]. The thermal decomposition from the mesophase is much slower than from solution and produces a more heterogeneous size distribution of the nanoparticles. Working in toluene solution, the size of nanoparticles can be modulated from ~2 to ~20 nm by tuning the chain lengths of the ligands present in the precursor. Different experimental conditions have been analyzed to reveal the processes governing the formation of the gold nanoparticles. Experiments on the effect of adding ligands or bubbling oxygen support that the thermal decomposition is a bimolecular process that starts by decoordination of the isocyanide ligand, producing an oxidative coupling of the akynyl group to [R-C≡C-C≡C-R] and reduction of gold(I) to gold(0) as nanoparticles. The nanoparticles obtained behave as a catalyst in the oxidation of isocyanide (CNR) to isocyanate (OCNR), which in turn cooperates to catalyze the decomposition.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nitrilas/química , Compostos Organoáuricos/química , Estrutura Molecular , Compostos Organoáuricos/síntese química , Tamanho da Partícula , Propriedades de Superfície
17.
Nanoscale ; 13(12): 5985-6004, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33729251

RESUMO

The discussion concerning cooperativity in supported single-atom (SA) catalysis is often limited to the metal-support interaction, which is certainly important, but which is not the only lever for modifying the catalytic performance. Indeed, if the interaction between the SA and the support, which can be seen as a solid ligand presenting its own specificities that fix the first coordination sphere of the metal, plays a central role as in homogeneous catalysis, other factors can strongly contribute to modification of the activity, selectivity and stability of SAs. Therefore, in this mini-review, we briefly summarize the importance of the support (oxide, carbon or a second metal) in SA photo- electro- and thermal-catalysis (support-assisted operation), and concentrate on other types of cooperativities that in some cases enable previously impossible reaction pathways on supported metal SAs. This includes topics that are not specific to SA catalysis, such as metal-ligand or heterobimetallic cooperativity, and cooperativity which is SA-specific such as nanoparticle-SA or mixed-valence SA cooperativity.

18.
J Hazard Mater ; 410: 124562, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33250306

RESUMO

The work aimed to synthesize three heterojunction photocatalysts (Eg = 2.65-2.78 eV) via in-situ encapsulation of 5% zinc doped titanium oxynitride (Zn0.05TiOxNy) catalyst into MOF-5 and bulk (BCN)/sulfur-doped (SCN) g-C3N4 supports using a microwave method. The prepared photocatalysts were characterized and utilized to purify textile industrial wastewater from the organic dye (e.g., methylene blue, MB) and microbial (e.g., E. coli, S. aureus, and C. albicans) contaminants under dark, visible, and solar lights. The output data confirmed the higher activity of Zn0.05TiOxNy@SCN and Zn0.05TiOxNy@MOF-5 for photo-induced microbial growth inactivation (> 90%) under visible light, with photo-biocidal efficiency of 0.91-1.69 mCFU/Einstein. Such a phenomenon is ascribed to the synergism between the high antimicrobial capacity of supports and photoactivity of Zn0.05TiOxNy. Also, Zn0.05TiOxNy@SCN exhibited far superiority to mineralize MB dye (Kphoto of 2.73 × 10-2 min-1) under direct sunlight due to its high photonic (ζ% of 4.4-8.3%)/quantum (QE of 0.56-0.54%) efficiencies for the generation of hydroxyl and superoxide (-•O2/•OH) oxidative species. As a practical case study, all heterojunction photocatalysts also demonstrated high-performance stability (5 cycles) for real textile wastewater treatment under sunlight (efficiency = 76.1-84.6%).

19.
JACS Au ; 1(2): 187-200, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467283

RESUMO

Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.

20.
Dalton Trans ; 49(29): 10250-10260, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672264

RESUMO

In the last decade we have witnessed increasing interest in the production of renewable energy and value-added chemicals through sustainable and low-cost technologies where catalysts play a crucial role. Herein, we report the application of a Ru/CNT material containing a mixture of Ru single atoms and Ru nanoparticles as a multifunctional catalyst for both the catalytic reduction of nitroarenes and the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The catalytic activity of the Ru-CNT material was evaluated in the reduction of 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitrophenol (2-NP) in the presence of sodium borohydride as a reducing agent at room temperature, showing high catalytic activity with normalized rate constants (knor) of 19.0 × 103, 57.7 × 103 and 16.6 × 103 min-1 mmol-1 respectively. Furthermore, the catalyst could be reused in at least 10 cycles without catalytic activity loss, confirming the high stability and robustness of the material. The Ru/CNT material also showed good ORR electrocatalytic activity in alkaline medium with Eonset of 0.76 V vs. RHE, a diffusion-limited current density of 3.89 mA cm-2 and ñO2 of 3.3. In addition, Ru/CNT was remarkably insensitive to methanol with a current retention of 93% (51% for Pt/C) and competitive electrochemical stability of 80% after 20 000 s. Moreover, Ru/CNT was active for the OER with jmax = 29.5 mA cm-2 at E = 1.86 V vs. RHE, η10 = 0.50 V and good stability (η10 changed to 0.01 V and jmax only decreased by ≈12% after 500 cycles).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa