Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 15(10): 1289-1298, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714353

RESUMO

This article reports an in situ UV-Vis-NIR diffuse reflectance (DR) spectroscopic and kinetic study of the photoformation and thermal annealing of light absorbing electronic point defects (color centers) in photochromic TiO2 in the temperature range 90-720 K using a simple laboratory-made cryostat-type accessory (for a Cary 5000 spectrophotometer equipped with an integrating sphere). The accessory also allowed for UV-Vis-NIR DR studies to be undertaken either in vacuum or in an oxygen atmosphere at significantly high temperatures (to 720 K) to assess dark chemical events occurring in photochromic titania with the participation of color centers. The DR spectral and kinetic measurements provided the opportunity to examine the separation of photoinduced charge carriers at traps and thermally stimulated carrier detrapping and recombination, as well as the response of color centers to oxidative/reductive treatments of photochromic TiO2. Kinetic results also demonstrate the applicability of the fabricated DR accessory as a high-temperature reaction cell in the systematic study of the principal regularities in the formation and destruction of color centers in titania at various temperatures and gaseous atmospheres.

2.
Langmuir ; 28(19): 7368-73, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22497296

RESUMO

The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)•) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced •CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of •NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded •NH(2) and •CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect.

3.
Photochem Photobiol Sci ; 11(7): 1121-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22488180

RESUMO

The concept Photocatalysis and, of greater import here, Heterogeneous Photocatalysis were first introduced in the second decade (1910-1920) of the 20th century according to the CAPLUS and MEDLINE databases (SciFinder). This review reports a brief historical perspective on the origins of the two concepts, whether implied or explicitly stated, in some detail up to about the mid-1980s when heterogeneous photocatalysis witnessed the beginning of an exponential growth, with particular emphasis on the use of nanosized TiO(2) particles in powdered form as the (so-called) photocatalyst of choice in environmental applications because of its inherent properties of abundance and chemical stability in acidic and alkaline aqueous media (in the dark), in contrast to ZnO that had been the metal oxide of choice in the early days. The early workers in this area often used the term photosensitization rather than the current popular term photocatalysis, used since the early 1980s. The term Photocatalysis appeared in the literature as early as 1910 in a book by Plotnikow (Russia) and a few years later it was introduced in France by Landau. The review also reports on contributions during the early years by Terenin at the University of St. Petersburg (previously Leningrad, Soviet Union), and in the decade spanning 1975-1985 contributions by Bard's group at the University of Texas at Austin (USA) as well as those of other groups. Some activities into the conversion of light energy to chemical fuels (e.g. H(2)) during the 1975-1985 decade are also considered.

4.
J Phys Condens Matter ; 31(42): 424001, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31226703

RESUMO

The present article reports novel opportunities of diffuse reflectance (DR) spectroscopy extended through the use of a cryostat accessory for UV-vis-NIR spectrophotometers to investigate temperature dependences of DR spectra at the fundamental absorption edge of semiconductors at T = 90-600 K. Examined are rutile TiO2, a photochromic rutile TiO2 with strong absorption in the visible region, and the halide double perovskite Cs2AgBiBr6 that exhibited two optical band-to-band transitions in low-temperature DR spectra. Also reported are DR spectral and kinetics measurements of the separation of photogenerated charge carriers in various trap sites, their thermostimulated detrapping and their recombination in two different photochromic materials. The similarity between absorption and temperature-programmed annealing (TPA) spectra induced in the UV and Vis regions yielded physical evidence of the photo-formation of charge carriers upon Vis-light excitation of intrinsic defects (F-type centers) in yellow rutile TiO2. High-temperature oxidative/reductive treatments of samples, together with spectral and kinetics measurements were performed in situ with the accessory. Results led to assigning color centers in yellow TiO2 to Ti3+ centers as deep electron traps, and to the establishment of several types of Ti3+-based color centers that include extra-negatively charged Ti δ+ centers (3 > δ > 2). Photochromic occurrences are also elucidated in the Bi-doped perovskite CsPbBr3 under illumination in the region of intrinsic absorption and annealing of photoinduced absorption at T = 200-400 K. These phenomena are described in terms of the photogeneration of charge carriers followed by their trapping, which yielded Bi-related electron color centers responsible for the photoinduced absorption and for the thermostimulated detrapping of photoholes that ultimately recombine with the trapped electrons. The establishment of photochromism in the perovskites may lead to a further understanding of photoinduced and dark reversible phenomena in halide perovskites and halide perovskite-based solar cells.

5.
J Phys Chem B ; 109(39): 18515-21, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16853384

RESUMO

In a recent article, Ollis analyzed heretofore reported photocatalyst kinetics of surface photochemical reactions that take place in heterogeneous systems and that rely heavily on the Langmuir-Hinshelwood (LH) kinetic model to interpret the experimental observations. This model assumes a fast adsorption/desorption equilibrium step and a subsequent slow surface step. His interesting analysis of the experimental results reported in 2000 by Emeline and co-workers, Xu and Langford, and Martyanov and Savinov prompted our reexamination of the LH kinetic model along with several other dogmas that continue to propagate in the heterogeneous photocatalytic landscape. This short article discusses some of these issues and reexamines certain misinterpretations. Specifically, we reexamine (1) the a priori assumed validity of the LH kinetic model in heterogeneous photocatalysis, (2) the recombination of photogenerated free charge carriers on the solid (metal oxide) photocatalyst by the band-to-band recombination pathway, and (3) the mistaken assertion that the kinetics of a heterogeneous photoreaction are either only first-order dependent or half-order dependent on photon flow (i.e., light irradiance).

6.
J Phys Chem B ; 109(7): 2785-92, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851288

RESUMO

The photoadsorption of oxygen (photoreduction on electron surface-active centers) and the photoadsorption of hydrogen (photooxidation on hole surface-active centers) as well as the photooxidation of hydrogen in the presence of oxygen were examined over irradiated zirconia (ZrO2) specimens by thermoprogrammed desorption spectroscopy (TPD) and kinetically to assess the states (forms) of oxygen species formed on the surface of zirconia. The three TPD spectral maxima observed inferred three oxygen species of varying activity in the photooxidation of hydrogen. The number of surface-active sites on the zirconia surface were quantitatively estimated (ca. 1 x 10(16) centers), thereby permitting an estimate of the turnover numbers (TON) for the photooxidation of hydrogen (TON > 14.5) and for the photoreduction of oxygen (TON > 6.6). These demonstrate for the first time that a photoreaction occurring on the surface of a metal-oxide photocatalyst is truly photocatalytic.

7.
J Phys Chem B ; 109(11): 5175-85, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16863182

RESUMO

A nonphotocatalytic reaction occurring on the surface of an irradiated wide band gap metal oxide, such as ZrO2, can affect the process of photoinduced formation of Zr3+, F- and V-type color centers. The effect of such reactions is seen as the influence of photostimulated adsorption on the photocoloration of the metal oxide specimen. In particular, photoadsorption of electron donor molecules leads to an increase of electron color centers, whereas photoadsorption of electron acceptor molecules leads to an increase of hole color centers. Monitoring the photocoloration of a metal oxide during a surface photochemical reaction probes whether the reaction is photocatalytic: accordingly, the influence of simple photoreactions on the photocoloration of ZrO2, reactions that involved the photoreduction of molecular oxygen, the photooxidation of molecular hydrogen, the photooxidation of hydrogen by adsorbed oxygen, and the photoinduced transformation of ammonia and carbon dioxide. Kinetics of the photoprocesses are reported, as well as the photoinduced chesorluminscence (PhICL effect) of ammonia. Thermoprogrammed desorption and mass spectral monitoring of the photoreaction involving NH3 identified hydrazine as an intermediate and molecular nitrogen as the final product. The photoreactions involving NH3 and CO2 are nonphotocatalytic processes, in contrast to the photooxidation of hydrogen which is photocatalytic. Carbon dioxide and carbonate radical anions are formed by interaction of CO2 with Zr3+ centers and hole states (OS-*), respectively. Mechanistic implications are discussed.

8.
FEBS Lett ; 418(1-2): 87-90, 1997 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9414101

RESUMO

Titanium dioxide (TiO2) has been noted (US Federal Register, 43FR38206, 25 August 1978) to be a safe physical sunscreen because it reflects and scatters UVB and UVA in sunlight. However, TiO2 absorbs about 70% of incident UV, and in aqueous environments this leads to the generation of hydroxyl radicals which can initiate oxidations. Using chemical methods, we show that all sunscreen TiO2 samples tested catalyse the photo-oxidation of a representative organic substrate (phenol). We also show that sunlight-illuminated TiO2 catalyses DNA damage both in vitro and in human cells. These results may be relevant to the overall effects of sunscreens.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Protetores Solares/toxicidade , Titânio/toxicidade , Catalase/farmacologia , Linhagem Celular , DNA/efeitos da radiação , Humanos , Oxirredução , Fenol/efeitos da radiação , Fotoquímica , Plasmídeos/efeitos da radiação , Luz Solar , Raios Ultravioleta , Óxido de Zinco/farmacologia
9.
Environ Sci Pollut Res Int ; 19(9): 3666-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23054729

RESUMO

INTRODUCTION: Transition from first- to second-generation photocatalysts has followed the notion that greater absorption of light in the visible region would yield greater spectral sensitivity and greater photoactivity. Though a promising strategy, in practice, it did not meet expectation because of various side issues, which in many cases has led to loss of photoactivity and chemical reactivity. This article examines some earlier notions that arose from applications of different metal oxides (e.g., TiO(2), ZnO, MgO among others) that made these oxides good photocatalysts in many processes. DISCUSSION: Phenomena that proved relevant in developing next generation photoactive materials are considered: the dependence of the activity of photocatalysts on the band gap energy, the spectral variations of the activity of photoactive materials, and the spectral variations of selectivity of photoactive materials. The tendency to decrease the energy of actinic photons through doping in forming second-generation photocatalysts is completely opposite the fundamental observation in first-generation photocatalysts whereby the activity increased with increasing band gap energy. Extension of spectral sensitivity of second-generation photoactive materials also caused a decrease of their photoactivity; hence, some notions are reconsidered to produce next(third) generation photoactive materials. The article proposes the following concepts to develop next generation photocatalysts: (1) multi(two)-photon excitation of photoactive materials with lower energy photons to achieve the same excited state as with higher energy photons, (2) utilization of heterojunctions to drive electronic processes in the desired direction, and (3) selective photoexcitation of localized electronic states to gain better selectivity.


Assuntos
Oxidantes Fotoquímicos/química , Processos Fotoquímicos , Catálise , Engenharia Química
10.
J Phys Chem Lett ; 3(5): 673-7, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286164
11.
Langmuir ; 20(1): 129-35, 2004 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-15745010

RESUMO

Adsorption of hydrogen and methane on a preirradiated surface of gamma-Al2O3 produces an afterglow, which has been described as a photoinduced chesorluminescence (PhICL), whose spectral features identify with the intrinsic photoluminescence of alumina. The emission spectrum consists of at least four overlapping single emission bands. For methane adsorption, the PhICL phenomenon is seen only if the solid is preirradiated in the presence of oxygen. Emission decay kinetics of the PhICL effect for gamma-Al2O3 reveal two wavelength regimes: a short wavelength regime at lambda = 300-370 nm (decay time tau = 1.1 +/- 0.2 s; signal width = 2.8 s), and a longer wavelength regime at lambda = 380-700 nm (decay time tau = 2.1 +/- 0.1 s; signal width = 4.3 s). A model is proposed in which there exist two different emission centers and, thus, two different pathways for emission decay. In the first, emission originates with electron trapping by such deep energy traps as anion vacancies {e- + Va --> F+ + hv1} to yield electron F-type color centers, whereas in the second, emission originates from electron/trapped hole recombination {e- + Os*- --> Os2- + hv2}. The first common step of the pathways is homolytic dissociative chemisorption of hydrogen and methane upon interaction with surface-active hole centers Os*-, produced upon preirradiation of alumina, to give atomic hydrogen H* and methyl radicals CH3*. Thermoprogrammed desorption spectra of photoadsorbed or postsorbed oxygen show that adsorbed oxygen interacts with atomic hydrogen and methyl radicals. The products of thermodesorption were H2O for hydrogen and H2O, CO2, and CH3CH3 for methane. The Solonitsyn memory effect coefficient was also evaluated for oxygen photoadsorption.


Assuntos
Óxido de Alumínio/química , Hidrogênio/química , Luminescência , Metano/química , Adsorção , Óxido de Alumínio/efeitos da radiação , Hidrogênio/efeitos da radiação , Medições Luminescentes , Metano/efeitos da radiação , Fotoquímica , Sensibilidade e Especificidade , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa