Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 40(6): 2432-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22123739

RESUMO

The precise nature of antisense transcripts in eukaryotes such as Saccharomyces cerevisiae remains elusive. Here we show that the 3' regions of genes possess a promoter architecture, including a pre-initiation complex (PIC), which mirrors that at the 5' region and which is much more pronounced at genes with a defined antisense transcript. Remarkably, for genes with an antisense transcript, average levels of PIC components at the 3' region are ∼60% of those at the 5' region. Moreover, at these genes, average levels of nascent antisense transcription are ∼45% of sense transcription. We find that this 3' promoter architecture persists for highly transcribed antisense transcripts where there are only low levels of transcription in the divergent sense direction, suggesting that the 3' regions of genes can drive antisense transcription independent of divergent sense transcription. To validate this, we insert short 3' regions into the middle of other genes and find that they are capable of both initiating antisense transcripts and terminating sense transcripts. Our results suggest that antisense transcription can be regulated independently of divergent sense transcription in a PIC-dependent manner and we propose that regulated production of antisense transcripts represents a fundamental and widespread component of gene regulation.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Antissenso/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/metabolismo , Transcrição Gênica , Região 3'-Flanqueadora , Região 5'-Flanqueadora , Galactoquinase/genética , Regiões Promotoras Genéticas , RNA Antissenso/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Regiões Terminadoras Genéticas , Transativadores/genética
2.
Nature ; 445(7128): 666-70, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17237763

RESUMO

Alternative promoters within the same gene are a general phenomenon in gene expression. Mechanisms of their selective regulation vary from one gene to another and are still poorly understood. Here we show that in quiescent cells the mechanism of transcriptional repression of the major promoter of the gene encoding dihydrofolate reductase depends on a non-coding transcript initiated from the upstream minor promoter and involves both the direct interaction of the RNA and promoter-specific interference. The specificity and efficiency of repression is ensured by the formation of a stable complex between non-coding RNA and the major promoter, direct interaction of the non-coding RNA with the general transcription factor IIB and dissociation of the preinitiation complex from the major promoter. By using in vivo and in vitro assays such as inducible and reconstituted transcription, RNA bandshifts, RNA interference, chromatin immunoprecipitation and RNA immunoprecipitation, we show that the regulatory transcript produced from the minor promoter has a critical function in an epigenetic mechanism of promoter-specific transcriptional repression.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Inativação Gênica , Regiões Promotoras Genéticas/genética , RNA não Traduzido/genética , Tetra-Hidrofolato Desidrogenase/genética , Transcrição Gênica/genética , Epistasia Genética , Humanos , RNA não Traduzido/metabolismo , Especificidade por Substrato , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/metabolismo
3.
Nat Commun ; 9(1): 5375, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560907

RESUMO

During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.


Assuntos
Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Separação Celular/métodos , Embrião de Mamíferos , Citometria de Fluxo/métodos , Código das Histonas/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Fatores de Transcrição/genética
4.
Elife ; 3: e03635, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407679

RESUMO

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.


Assuntos
Regulação Fúngica da Expressão Gênica , Família Multigênica , Saccharomyces cerevisiae/genética , Transcrição Gênica , Carbono/farmacologia , Genes Fúngicos , Loci Gênicos , Redes e Vias Metabólicas/efeitos dos fármacos , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa