Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(9): 3339-3363, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35670759

RESUMO

Lignin biosynthesis begins with the deamination of phenylalanine and tyrosine (Tyr) as a key branch point between primary and secondary metabolism in land plants. Here, we used a systems biology approach to investigate the global metabolic responses to lignin pathway perturbations in the model grass Brachypodium distachyon. We identified the lignin biosynthetic protein families and found that ammonia-lyases (ALs) are among the most abundant proteins in lignifying tissues in grasses. Integrated metabolomic and proteomic data support a link between lignin biosynthesis and primary metabolism mediated by the ammonia released from ALs that is recycled for the synthesis of amino acids via glutamine. RNA interference knockdown of lignin genes confirmed that the route of the canonical pathway using shikimate ester intermediates is not essential for lignin formation in Brachypodium, and there is an alternative pathway from Tyr via sinapic acid for the synthesis of syringyl lignin involving yet uncharacterized enzymatic steps. Our findings support a model in which plant ALs play a central role in coordinating the allocation of carbon for lignin synthesis and the nitrogen available for plant growth. Collectively, these data also emphasize the value of integrative multiomic analyses to advance our understanding of plant metabolism.


Assuntos
Brachypodium , Lignina , Proteínas de Plantas , Proteômica
2.
Plant J ; 103(5): 1924-1936, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32410353

RESUMO

Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.


Assuntos
Brachypodium/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Retroelementos/genética , Cromossomos de Plantas/genética , Mutagênese Insercional/métodos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
Methods Mol Biol ; 1667: 57-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29039003

RESUMO

Brachypodium distachyon is a model grass species for economically important cereal crops. Efforts are in progress to develop useful functional genomic resources in Brachypodium. A tobacco retrotransposon, Tnt1, has been used successfully in recent past to generate insertional mutagenesis in several dicot plant species. Tnt1 retrotransposon replicates, transposes, and inserts at multiple random genomic locations in the plant genome. Transposition occurs only during somatic embryogenesis but not during seed transmission. We developed Brachypodium transgenic plants that can express the Tnt1 element. Here, we describe an efficient tissue culture-based approach to generate Tnt1 insertional mutant population using transgenic Brachypodium line expressing the Tnt1 retrotransposon.


Assuntos
Brachypodium/genética , Mutagênese Insercional/métodos , Plantas Geneticamente Modificadas/genética , Retroelementos , Técnicas de Cultura de Tecidos/métodos , Brachypodium/embriologia , Brachypodium/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/embriologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Nicotiana/genética
4.
Nat Plants ; 2(6): 16050, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27255834

RESUMO

L-Phenylalanine ammonia-lyase (PAL) is the first enzyme in the biosynthesis of phenylpropanoid-derived plant compounds such as flavonoids, coumarins and the cell wall polymer lignin. The cell walls of grasses possess higher proportions of syringyl (S)-rich lignins and high levels of esterified coumaric acid compared with those of dicotyledonous plants, and PAL from grasses can also possess tyrosine ammonia-lyase (TAL) activity, the reason for which has remained unclear. Using phylogenetic, transcriptomic and in vitro biochemical analyses, we identified a single homotetrameric bifunctional ammonia-lyase (PTAL) among eight BdPAL enzymes in the model grass species Brachypodium distachyon. (13)C isotope labelling experiments along with BdPTAL1-downregulation in transgenic plants showed that the TAL activity of BdPTAL1 can provide nearly half of the total lignin deposited in Brachypodium, with a preference for S-lignin and wall-bound coumarate biosynthesis, indicating that PTAL function is linked to the characteristic features of grass cell walls. Furthermore, isotope dilution experiments suggest that the pathways to lignin from L-phenylalanine and L-tyrosine are distinct beyond the formation of 4-coumarate, supporting the organization of lignin synthesis enzymes in one or more metabolons.


Assuntos
Brachypodium/genética , Lignina/biossíntese , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Brachypodium/metabolismo , Parede Celular/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa