Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 45(3): e2200194, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549872

RESUMO

The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.


Assuntos
Ciclo do Ácido Cítrico , Mitofagia , Morte Celular , Glicólise , Mitocôndrias/metabolismo
2.
Purinergic Signal ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36703008

RESUMO

Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A3 adenosine receptor (A3R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A3R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A3R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).

3.
J Immunol ; 205(5): 1198-1206, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680957

RESUMO

Fever in infections correlates with inflammation, macrophage infiltration into the affected organ, macrophage activation, and release of cytokines involved in immune response, hematopoiesis, and homeostatic processes. Angiotensin-converting enzyme 2 (ACE2) is the canonical cell surface receptor for SARS-CoV-2. ACE2 together with angiotensin receptor types 1 and 2 and ACE2 are components of the renin-angiotensin system (RAS). Exacerbated production of cytokines, mainly IL-6, points to macrophages as key to understand differential COVID-19 severity. SARS-CoV-2 may modulate macrophage-mediated inflammation events by altering the balance between angiotensin II, which activates angiotensin receptor types 1 and 2, and angiotensin 1-7 and alamandine, which activate MAS proto-oncogene and MAS-related D receptors, respectively. In addition to macrophages, lung cells express RAS components; also, some lung cells are able to produce IL-6. Addressing how SARS-CoV-2 unbalances RAS functionality via ACE2 will help design therapies to attenuate a COVID-19-related cytokine storm.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/imunologia , Interleucina-6/biossíntese , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Pandemias , Fragmentos de Peptídeos/metabolismo , Pneumonia Viral/virologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2
4.
Cell Mol Life Sci ; 78(8): 3957-3968, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580270

RESUMO

Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.


Assuntos
Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Receptores Purinérgicos P1/química , Transdução de Sinais
5.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361545

RESUMO

The composition of the aqueous humor of patients with type 2 diabetes is relevant to understanding the underlying causes of eye-related comorbidities. Information on the composition of aqueous humor in healthy subjects is limited due to the lack of adequate controls. To carry out a metabolomics study, 31 samples of aqueous humor from healthy subjects without ocular pathology, submitted to refractive surgery and seven samples from patients with type 2 diabetes without signs of ocular pathology related to diabetes were used. The level of 25 molecules was significantly (p < 0.001) altered in the aqueous humor of the patient group. The concentration of a single molecule, N-acetylornithine, makes it possible to discriminate between control and diabetes (sensitivity and specificity equal to 1). In addition, receptor operating characteristic curve and principal component analysis for the above-mentioned six molecules yielded significantly (p < 0.001) altered in the aqueous humor of the patient group. In addition, receptor operating characteristic curve and principal component analysis for six compounds yielded cut-off values and remarkable sensitivity, specificity, and segregation ability. The altered level of N-acetylornithine may be due to an increased amount of acetate in diabetes. It is of interest to further investigate whether this alteration is related to the pathogenesis of the disease. The increase in the amino form of pyruvate, alanine, in diabetes is also relevant because it could be a means of reducing the formation of lactate from pyruvate.


Assuntos
Humor Aquoso , Diabetes Mellitus Tipo 2 , Humanos , Metabolômica , Aminas Biogênicas , Piruvatos
6.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143389

RESUMO

G protein-coupled receptors (GPCRs), which constitute the most populous family of the human proteome, are the target of 35-45% of approved therapeutic drugs. This review focuses on natural products (excluding peptides) that target GPCRs. Natural compounds identified so far as agonists, antagonists or allosteric modulators of GPCRs have been found in all groups of existing living beings according to Whittaker's Five Kingdom Classification, i.e., bacteria (monera), fungi, protoctists, plants and animals. Terpenoids, alkaloids and flavonoids are the most common chemical structures that target GPCRs whose endogenous ligands range from lipids to epinephrine, from molecules that activate taste receptors to molecules that activate smell receptors. Virtually all of the compounds whose formula is displayed in this review are pharmacophores with potential for drug discovery; furthermore, they are expected to help expand the number of GPCRs that can be considered as therapeutic targets.


Assuntos
Produtos Biológicos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Receptores Acoplados a Proteínas G , Regulação Alostérica/efeitos dos fármacos , Animais , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Humanos , Ligantes , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo
7.
Mitochondrion ; : 101934, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992856

RESUMO

A hallmark of neuroinflammatory disorders is mitochondrial dysfunction. Nevertheless, the transcriptional changes underlying this alteration are not well-defined. Microglia activation, a decrease in mitochondrion biogenesis and a subsequent alteration of the redox are common factors in diseases coursing with neuroinflammation. In the last two decades, components of the adenosinergic system have been proposed as potential therapeutic targets to combat neuroinflammation. In this research, we analyzed by RNAseq the gene expression in activated microglia treated with an adenosine A2A receptor antagonist, SCH 582561, and/or an A3 receptor agonist, 2-Cl-IB-MECA, since these receptors are deeply related to neurodegeneration and inflammation. The analysis was focused on genes related to inflammation and REDOX homeostasis. It was detected that in the three conditions (microglia treated with 2-Cl-IB-MECA, SCH 582561, and the combination) more than 40 % of the detected genes codified by the mitochondrial genome were differentially expressed (FDR < 0.05) (14/34, 16/34, and 13/34) respectively, being almost all of them (>85 %) upregulated in the microglia treated with adenosinergic compounds. Also, we analyzed the differential expression of genes related to mitochondrial function and oxidative stress codified by the nuclear genome. Additionally, we evaluated the oxygen consumption rate (OCR) of mitochondria in microglia treated with LPS and IFN-γ, both alone and in combination with adenosinergic compounds. The data showed an improvement in mitochondrial function with the antagonist of the adenosine A2A receptor, compared to the effects of pro-inflammatory stimulus, confirming a functional effect consistent with the RNAseq data.

8.
Metabolites ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535309

RESUMO

This paper aimed at devising an intelligence-based method to select compounds that can distinguish between open-angle glaucoma patients, type 2 diabetes patients, and healthy controls. Taking the concentration of 188 compounds measured in the aqueous humour (AH) of patients and controls, linear discriminant analysis (LDA) was used to identify the right combination of compounds that could lead to accurate diagnosis. All possibilities, using the leave-one-out approach, were considered through ad hoc programming and in silico massive data production and statistical analysis. Our proof of concept led to the selection of four molecules: acetyl-ornithine (Ac-Orn), C3 acyl-carnitine (C3), diacyl C42:6 phosphatidylcholine (PC aa C42:6), and C3-DC (C4-OH) acyl-carnitine (C3-DC (C4-OH)) that, taken in combination, would lead to a 95% discriminative success. 100% success was obtained with a non-linear combination of the concentration of three of these four compounds. By discarding younger controls to adjust by age, results were similar although one control was misclassified as a diabetes patient. Methods based on the consideration of individual clinical chemical parameters have limitations in the ability to make a reliable diagnosis, stratify patients, and assess disease progression. Leveraging human AH metabolomic data, we developed a procedure that selects a minimal number of metabolites (3-5) and designs algorithms that maximize the overall accuracy evaluating both positive predictive (PPV) and negative predictive (NPV) values. Our approach of simultaneously considering the levels of a few metabolites can be extended to any other body fluid and has potential to advance precision medicine. Artificial intelligence is expected to use algorithms that use the concentration of three to five molecules to correctly diagnose diseases, also allowing stratification of patients and evaluation of disease progression. In addition, this significant advance shifts focus from a single-molecule biomarker approach to that of an appropriate combination of metabolites.

9.
Antioxidants (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37891948

RESUMO

The renin angiotensin system (RAS) has several components including signaling peptides, enzymes, and membrane receptors. The effort in characterizing this system in the periphery has led to the approval of a class of antihypertensives. Much less is known about RAS in the central nervous system. The production of RAS peptides and the expression of several RAS enzymes and receptors in dopaminergic neurons of the substantia nigra has raised expectations in the therapy of Parkinson's disease, a neurodegenerative condition characterized by lack of dopamine in the striatum, the motor control region of the mammalian brain. On the one hand, dopamine production requires reducing power. On the other hand, reducing power is required by mechanisms involved in REDOX homeostasis. This review focuses on the potential role of RAS in the regulation of neuronal/glial expression of glucose-6-phosphate dehydrogenase, which produces the NADPH required for dopamine synthesis and for reactive oxygen species (ROS) detoxification. It is known that transgenic expression of the gene coding for glucose-6-phosphate dehydrogenase prevents the death of dopaminergic nigral neurons. Signaling via angiotensin II G protein-coupled receptors, AT1 or AT2, leads to the activation of protein kinase A and/or protein kinase C that in turn can regulate glucose-6- phosphate dehydrogenase activity, by Ser/Thr phosphorylation/dephosphorylation events. Long-term effects of AT1 or AT2 receptor activation may also impact on the concentration of the enzyme via activation of transcription factors that participate in the regulation of gene expression in neurons (or glia). Future research is needed to determine how the system can be pharmacologically manipulated to increase the availability of NADPH to neurons degenerating in Parkinson's disease and to neuroprotective glia.

10.
Cells ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37759436

RESUMO

Microglial activation often accompanies the plastic changes occurring in the brain of patients with neurodegenerative diseases. A2A and A3 adenosine receptors have been proposed as therapeutic targets to combat neurodegeneration. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with SCH 58261, a selective A2A receptor antagonist, and with both SCH 58261 and 2-Cl-IB-MECA, a selective A3 receptor agonist. None of the treatments led to any clear microglial phenotype when gene expression for classical biomarkers of microglial polarization was assessed. However, many of the downregulated genes were directly or indirectly related to immune system-related events. Searching for genes whose expression was both significantly and synergistically affected when treated with the two adenosine receptor ligands, the AC122413.1 and Olfr56 were selected among those that were, respectively, upregulated and downregulated. We therefore propose that the products of these genes, olfactory receptor 56 and T-cell activation GTPase-activating protein 1, deserve attention as potential biomarkers of phenotypes that occur upon microglial activation.

11.
Front Pharmacol ; 14: 1108617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266149

RESUMO

Heteromer formation is unknown for the olfactory family of G protein-coupled receptors (GPCRs). We here identified, in a heterologous system, heteromers formed by the adenosine A2A receptor (A2AR), which is a target for neuroprotection, and an olfactory receptor. A2AR interacts with the receptor family 51, subfamily E, member 2 (OR51E2), the human ortholog of the mouse Olfr-78, whose mRNA is differentially expressed in activated microglia treated with adenosine receptor ligands. Bioluminescence resonance energy transfer (BRET) assays were performed in HEK-293T cells expressing the human version of the receptors, OR51E2 and A2AR, fused, respectively, to Renilla luciferase (RLuc) and the yellow fluorescent protein (YFP). BRET data was consistent with a receptor-receptor interaction whose consequences at the functional level were measured by cAMP level determination in CHO cells. Results showed an olfactory receptor-mediated partial blockade of Gs coupling to the A2AR, i.e., the effect of the A2AR selective agonist on intracellular levels of cAMP was significantly reduced. Two odorants, menthol and 1,8-cineole, which failed to show Golf-mediated OR51E2 activation because they did not increase cytosolic cAMP levels, reduced the BRET readings in cells expressing A2AR-YFP and OR51E2-Rluc, most likely suggesting a conformational change of at least one receptor. These odorants led to an almost complete block of A2AR coupling to Gs.

12.
Fluids Barriers CNS ; 20(1): 90, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049870

RESUMO

BACKGROUND: The lack of accessible and informative biomarkers results in a delayed diagnosis of Parkinson's disease (PD), whose symptoms appear when a significant number of dopaminergic neurons have already disappeared. The retina, a historically overlooked part of the central nervous system (CNS), has gained recent attention. It has been discovered that the composition of cerebrospinal fluid influences the aqueous humor composition through microfluidic circulation. In addition, alterations found in the brain of patients with PD have a correlate in the retina. This new paradigm highlights the potential of the aqueous humor as a sample for identifying differentially concentrated metabolites that could, eventually, become biomarkers if also found altered in blood or CSF of patients. In this research we aim at analyzing the composition of the aqueous humor from healthy controls and PD patients. METHODS: A targeted metabolomics approach with concentration determination by mass spectrometry was used. Statistical methods including principal component analysis and linear discriminants were used to select differentially concentrated metabolites that allow distinguishing patients from controls. RESULTS: In this first metabolomics study in the aqueous humor of PD patients, elevated levels of 16 compounds were found; molecules differentially concentrated grouped into biogenic amines, amino acids, and acylcarnitines. A biogenic amine, putrescine, alone could be a metabolite capable of differentiating between PD and control samples. The altered levels of the metabolites were correlated, suggesting that the elevations stem from a common mechanism involving arginine metabolism. CONCLUSIONS: A combination of three metabolites, putrescine, tyrosine, and carnitine was able to correctly classify healthy participants from PD patients. Altered metabolite levels suggest altered arginine metabolism. The pattern of metabolomic disturbances was not due to the levodopa-based dopamine replacement medication because one of the patients was not yet taking levodopa but a dopamine receptor agonist.


Assuntos
Doença de Parkinson , Humanos , Levodopa/metabolismo , Humor Aquoso/metabolismo , Putrescina/metabolismo , Biomarcadores/líquido cefalorraquidiano , Arginina/metabolismo
13.
Biomedicines ; 10(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625935

RESUMO

The Krebs cycle in cells that contain mitochondria is necessary for both energy production and anabolic processes. In given cell/condition, the Krebs cycle is dynamic but remains at a steady state. In this article, we first aimed at comparing the properties of a closed cycle versus the same metabolism in a linear array. The main finding is that, unlike a linear metabolism, the closed cycle can reach a steady state (SS) regardless of the nature and magnitude of the disturbance. When the cycle is modeled with input and output reactions, the "open" cycle is robust and reaches a steady state but with exceptions that lead to sustained accumulation of intermediate metabolites, i.e., conditions at which no SS can be achieved. The modeling of the cycle in cancer, trying to obtain marked reductions in flux, shows that these reductions are limited and therefore the Warburg effect is moderate at most. In general, our results of modeling the cycle in different conditions and looking for the achievement, or not, of SS, suggest that the cycle may have a regulation, not yet discovered, to go from an open cycle to a closed one. Said regulation could allow for reaching the steady state, thus avoiding the unwanted effects derived from the aberrant accumulation of metabolites in the mitochondria. The information in this paper might be useful to evaluate metabolism-modifying medicines.

14.
Front Med (Lausanne) ; 9: 935084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935793

RESUMO

The composition of the aqueous humor of patients with glaucoma is relevant to understand the underlying causes of the pathology. Information on the concentration of metabolites and small molecules in the aqueous humor of healthy subjects is limited. Among the causes of the limitations is the lack of healthy controls since, until recently, they were not surgically intervened; therefore, the aqueous humor of patients operated for cataract was used as a reference. Sixteen aqueous humor samples from healthy subjects undergoing refractive surgery and eight samples from glaucoma patients were used to assess the concentration of 188 compounds using chromatography and mass spectrometry. The concentration of 80 of the 188 was found to be reliable, allowing comparison of data from the two groups (glaucoma and control). The pattern found in the controls is similar to, but not the same as, that reported using samples from "controls" undergoing cataract surgery. Comparing data from glaucoma patients and healthy subjects, 57 of the 80 compounds were significantly (p < 0.05) altered in the aqueous humor. Kynurenine and glutamine, but not glutamate, were significantly increased in the glaucoma samples. Furthermore, 10 compounds were selected considering a statistical score of p < 0.0001 and the degree of change of more than double or less than half. The level of C10 (decanoyl)-carnitine decreased, while the concentration of spermidine and various acyl-carnitines and lysophosphatidylcholines increased in glaucoma. Principal component analysis showed complete segregation of controls and cases using the data for the 10 selected compounds. The receiver operating characteristic curve these 10 compounds and for glutamine allowed finding cut-off values and significant sensitivity and specificity scores. The concentration of small metabolites in the aqueous humor of glaucoma patients is altered even when they take medication and are well controlled. The imbalance affects membrane components, especially those of the mitochondria, suggesting that mitochondrial abnormalities are a cause or consequence of glaucoma. The increase in glutamine in glaucoma is also relevant because it could be a means of keeping the concentration of glutamate under control, thus avoiding its potential to induce the death of neurons and retinal cells. Equally notable was the increase in kynurenine, which is essential in the metabolism of nicotine adenine dinucleotides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa