Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 55(10): 452-467, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458463

RESUMO

We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.


Assuntos
Adiposidade , COVID-19 , Humanos , Ratos , Feminino , Animais , Camundongos , Adiposidade/genética , Pandemias , COVID-19/genética , Controle de Doenças Transmissíveis , Obesidade/genética , Obesidade/metabolismo , Corticosterona , Dieta Hiperlipídica/efeitos adversos , Fenótipo , Camundongos Knockout
2.
Physiol Genomics ; 54(6): 206-219, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35467982

RESUMO

Transcriptomic analysis in metabolically active tissues allows a systems genetics approach to identify causal genes and networks involved in metabolic disease. Outbred heterogeneous stock (HS) rats are used for genetic mapping of complex traits, but to-date, a systems genetics analysis of metabolic tissues has not been done. We investigated whether adiposity-associated genes and gene coexpression networks in outbred heterogeneous stock (HS) rats overlap those found in humans. We analyzed RNAseq data from adipose tissue of 415 male HS rats, correlated these transcripts with body weight (BW) and compared transcriptome signatures to two human cohorts: the "African American Genetics of Metabolism and Expression" and "Metabolic Syndrome in Men." We used weighted gene coexpression network analysis to identify adiposity-associated gene networks and mediation analysis to identify genes under genetic control whose expression drives adiposity. We identified 554 orthologous "consensus genes" whose expression correlates with BW in the rat and with body mass index (BMI) in both human cohorts. Consensus genes fell within eight coexpressed networks and were enriched for genes involved in immune system function, cell growth, extracellular matrix organization, and lipid metabolic processes. We identified 19 consensus genes for which genetic variation may influence BW via their expression, including those involved in lipolysis (e.g., Hcar1), inflammation (e.g., Rgs1), adipogenesis (e.g., Tmem120b), or no previously known role in obesity (e.g., St14 and Ms4a6a). Strong concordance between HS rat and human BW/BMI associated transcripts demonstrates translational utility of the rat model, while identification of novel genes expands our knowledge of the genetics underlying obesity.


Assuntos
Redes Reguladoras de Genes , Obesidade , Transcriptoma , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Perfilação da Expressão Gênica , Humanos , Masculino , Obesidade/genética , Ratos
3.
Physiol Genomics ; 52(9): 379-390, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687430

RESUMO

Obesity is influenced by genetics and diet and has wide ranging comorbidities, including anxiety and depressive disorders. Outbred heterogeneous stock (HS) rats are used for fine-genetic mapping of complex traits and may be useful for understanding gene by diet interactions. In this study, HS rats were fed diets containing 60% kcal from fat (high-fat diet, HFD) or 10% kcal from fat (low-fat diet, LFD) and tested for metabolic (study 1) and behavioral (study 2) outcomes. In study 1, we measured glucose tolerance, fasting glucose and insulin, fat pad weights and despair-like behavior in the forced swim test (FST). In study 2, we assessed anxiety-like (elevated plus maze, EPM; open field test, OFT) and despair-like/coping (splash test, SpT; and FST) behaviors. Body weight and food intake were measured weekly in both studies. We found negative effects of HFD on metabolic outcomes, including increased body weight and fat pad weights, decreased glucose tolerance, and increased fasting insulin. We also found negative effects of HFD on despair-like/coping and anxiety-like behaviors. These include increased immobility in the FST, decreased open arm time in the EPM, and increased movement and rest episodes and decreased rearing in the OFT. The diet-induced changes in EPM and OFT were independent of overall locomotion. Additionally, diet-induced changes in OFT behaviors were independent of adiposity, while adiposity was a confounding factor for EPM and FST behavior. This work establishes the HS as a model to study gene by diet interactions affecting metabolic and behavioral health.


Assuntos
Comportamento Animal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/patologia , Obesidade/patologia , Adiposidade , Animais , Animais não Endogâmicos , Ansiedade/etiologia , Ansiedade/psicologia , Peso Corporal , Modelos Animais de Doenças , Teste de Tolerância a Glucose/métodos , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/psicologia , Obesidade/etiologia , Ratos
4.
bioRxiv ; 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993361

RESUMO

We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.

5.
Diabetes ; 72(1): 135-148, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219827

RESUMO

Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.


Assuntos
Adiposidade , Insulinas , Ratos , Masculino , Humanos , Animais , Adiposidade/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Triglicerídeos , Insulinas/genética , Lipídeos , Polimorfismo de Nucleotídeo Único
6.
Front Genet ; 13: 942574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212147

RESUMO

Despite the obesity crisis in the United States, the underlying genetics are poorly understood. Our lab previously identified Keratinocyte-associated protein 3, Krtcap3, as a candidate gene for adiposity through a genome-wide association study in outbred rats, where increased liver expression of Krtcap3 correlated with decreased fat mass. Here we seek to confirm that Krtcap3 expression affects adiposity traits. To do so, we developed an in vivo whole-body Krtcap3 knock-out (KO) rat model. Wild-type (WT) and KO rats were placed onto a high-fat (HFD) or low-fat diet (LFD) at 6 weeks of age and were maintained on diet for 13 weeks, followed by assessments of metabolic health. We hypothesized that Krtcap3-KO rats will have increased adiposity and a worsened metabolic phenotype relative to WT. We found that KO male and female rats have significantly increased body weight versus WT, with the largest effect in females on a HFD. KO females also ate more and had greater adiposity, but were more insulin sensitive than WT regardless of diet condition. Although KO males weighed more than WT under both diet conditions, there were no differences in eating behavior or fat mass. Interestingly, KO males on a HFD were more insulin resistant than WT. This study confirms that Krtcap3 plays a role in body weight regulation and demonstrates genotype- and sex-specific effects on food intake, adiposity, and insulin sensitivity. Future studies will seek to better understand these sex differences, the role of diet, and establish a mechanism for Krtcap3 in obesity.

7.
Front Microbiol ; 9: 2897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555441

RESUMO

Gut microbiome plays a fundamental role in several aspects of host health and diseases. There has been an exponential surge in the use of animal models that can mimic different phenotypes of the human intestinal ecosystem. However, data on host species-specific signatures of gut microbiome and its metabolites like short-chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) and lactate in these models and their similarities/differences from humans remain limited, due to high variability in protocols and analyses. Here, we analyze the fecal microbiota composition and the fecal levels of SCFAs and lactate in three of the most-widely used animal models, i.e., mice, rats, and non-human primates (NHPs) and compare them with human subjects, using data generated on a single platform with same protocols. The data show several species-specific similarities and differences in the gut microbiota and fecal organic acids between these species groups. Based on ß-diversity, the gut microbiota in humans seems to be closer to NHPs than to mice and rats; however, among rodents, mice microbiota appears to be closer to humans than rats. The phylum-level analyses demonstrate higher Firmicutes-Bacteroidetes ratio in humans and NHPs vs. mice and rats. Human microbiota is dominated by Bacteroides followed by Ruminococcaceae and Clostridiales. Mouse gut is predominated by members of the family S24-7 followed by those from the order Clostridiales, whereas rats and NHPs have higher abundance of Prevotella compared with mice and humans. Also, fecal levels of lactate are higher in mice and rats vs. NHPs and humans, while acetate is highest in human feces. These data of host species-specific gut microbiota signatures in some of the most widely used animal models in context to the human microbiota might reflect disparities in host factors, e.g., diets, genetic origin, gender and age, and hence call for prospective studies investigating the features of gut microbiome in such animal models by controlling for these host elements.

8.
Gene ; 542(2): 221-31, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24680781

RESUMO

Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome.


Assuntos
Retroelementos/genética , Schizosaccharomyces/genética , Sequência de Bases , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genoma Fúngico , Gentamicinas/farmacologia , Ácidos Hidroxâmicos/farmacologia , Dados de Sequência Molecular , RNA Fúngico/análise , Schizosaccharomyces/efeitos dos fármacos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa