Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 111(5): 62, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903886

RESUMO

Bentazon (Basagran®) belongs to the chemical group of benzothiadiazinones. Thus, this study aimed to estimate the influence of herbicide bentazon (3 µg.L-1, 6 µg.L-1, 12 µg.L-1, 300 µg.L-1) in Danio rerio embryos development. The study tested environmental relevant concentrations of bentazon as well as the limit established for drinking water (300 µg.L-1) in Brazil. We performed behavioral and developmental analyzes during 96 h of exposure. The bentazon measurements after experimental period showed reduction ranging from 5.0 to 18.93% between exposed groups. Our results showed significant differences in the heart rate, which was significantly higher in groups exposed to all bentazon concentrations compared to control groups. The absence of alterations in the behavioral parameters showing that the herbicide bentazon at the concentrations tested had few adverse effects on the development and behavior of the Danio rerio embryos. Considering the toxic point of view, there is a chance that bentazon acts together with other environmental contaminants as an additive or synergistic way.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Peixe-Zebra , Benzotiadiazinas/toxicidade , Desenvolvimento Embrionário , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
2.
Ecotoxicology ; 30(1): 164-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33196985

RESUMO

The insecticides imidacloprid (IMI), a neonicotinoid, and propoxur (PRO), an N-methylcarbamate compound, are pesticides widely used throughout the world. Although they are not used together to combat pests, both are often found in freshwater near agricultural areas. Thereby, the goal of this study was to evaluate the additive effects of IMI and PRO mixtures at environmental concentrations in relation to isolated compounds on Rhamdia quelen, a neotropical fish. The fish was exposed to IMI (0.11 µg/L), PRO (0.039 µg/L), or Mix (0.11 µg/L IMI plus 0.039 µg/L PRO) during 96 h. Glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) activities were determined. To verify oxidative damage thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC), reactive oxygen species contents (ROS), antioxidant capacity against peroxides (ACAP) were determined in gills, liver, brain and muscle. The results shows that a mixture of these pesticides at environmental concentrations inhibited acetylcholinesterase activity in the brain and induced oxidative damage in all analyzed tissues. These results reinforce the hypothesis that mixture of contaminants present in environment could induce additive or synergistic effects on fish species.


Assuntos
Peixes-Gato , Praguicidas , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Peixes-Gato/metabolismo , Colinérgicos/metabolismo , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Praguicidas/metabolismo , Praguicidas/toxicidade , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicology ; 30(4): 585-598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770304

RESUMO

The high demand for food consequently increases the entry of agricultural residues into water resources, and this phenomenon can affect non-target organisms in different ways. Environmentally relevant pesticide effects (per se or in combinations) are scarce in the scientific literature. Therefore, the aim of this study was to investigate: (1) the presence of pesticide residues in an important Brazilian source of water supply and power generation (Jacuí river), during 1 year of monitoring. (2) in a laboratory study verify the effects of the most frequently, herbicide, fungicide, and insecticide found in Jacuí river (individualized or in a mixture) on biochemical parameters in different tissues of Oreochromis niloticus. Twenty pesticide residues were detected in superficial water samples, and two of them are banned in Brazilian territory. Atrazine (0.56 µg L-1), azoxystrobin (0.024 µg L-1), and imidacloprid (0.11 µg L-1) were the most frequently herbicide, fungicide, and insecticide, respectively, found in the river and were used in the laboratory assay. O. niloticus exposed to the pesticide mixture exhibited more biochemical effects than individualized exposure groups. This response can be a result of the combined pesticide effects, culminating in an additive or synergistic effect, depending on the biomarker. In individual exposure groups, atrazine presented the most pronounced alterations, followed by azoxystrobin and imidacloprid. Overall, pesticide exposure increased levels of oxidative stress parameters, reduced antioxidant enzyme activities, and induced acetylcholinesterase activity. These findings highlight the threat to aquatic organisms which may be exposed to a miscellaneous of toxic compounds in the environment.


Assuntos
Atrazina , Ciclídeos , Praguicidas , Poluentes Químicos da Água , Animais , Brasil , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Ecotoxicol Environ Saf ; 190: 110071, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841896

RESUMO

Aquatic environments are affected by the use of pesticides in agricultural areas near rivers. To assess the impact of pesticide residues on affected environments Danio rerio (zebrafish) embryos have become an alternative model for biomonitoring studies. In the present study, zebrafish embryos were used as bioindicator of water quality in the Vacacaí river, located in the city of Santa Maria, southern Brazil. We hypothesized that it would be possible to observe changes in the biomarkers tested in the embryos. Exposures were performed over a total of eight months during the year 2018 using water collected in a river located near agricultural areas. Twenty-four pesticides were found in river water samples. The most frequently found were atrazine, quinclorac and clomazone. During exposure (96 h) spontaneous movement, the heart rate and hatching rate were evaluated. After the exposure time the embryos were euthanized for biochemical assays. We analyzed biomarkers such as thiobarbituric acid reactive substance (TBARS), acetylcholinesterase (AChE), glutathione S-transferase (GST) and catalase (CAT). We observed increases in GST and TBARS, especially during periods of major water contamination such as January, February, October, and November. Pesticides can affect the development of native species that reproduce during periods of high agricultural production. These results demonstrate the potential use of biochemical parameters combined with developmental and behavioral analyses in zebrafish embryos for biomonitoring studies.


Assuntos
Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Acetilcolinesterase/metabolismo , Agricultura , Animais , Biomarcadores/metabolismo , Brasil , Catalase/metabolismo , Embrião não Mamífero/fisiologia , Glutationa Transferase/metabolismo , Frequência Cardíaca , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
5.
Ecotoxicol Environ Saf ; 203: 110982, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888624

RESUMO

Freshwater ecosystems are constantly threatened by the advance of agricultural activities. Abiotic variables (such as temperature, ammonia, and nitrite) and contaminants (e.g. pesticides) can potentially interact, increasing metabolism and the absorption of toxic substances, which can alter the ability of organisms to establish adequate stress responses. This study aimed to verify which pesticides were most frequently found and in the greatest quantities in low-order streams, and whether the combination of these pesticides with the abiotic variables altered the biological metabolism of aeglids. These freshwater crustaceans are important shredders that inhabit low-order streams and are sensitive to disturbances and/or abrupt environmental variations. The animals were exposed in situ in four streams (reference site and sites 1, 2, and 3). The reference site is a preserved stream with no apparent anthropogenic interference where aeglids still occur, while the other sites no longer exhibit populations of these animals and are influenced by agricultural activities. The exposure was performed bimonthly from November 2017 to September 2018 and lasted 96 h. Measured abiotic data and water samples were collected through all days of exposure. The analyzed biochemical parameters were acetylcholinesterase activity in muscle; and glutathione S-transferase, lipid peroxidation, protein carbonylation, non-protein thiols, antioxidant capacity against peroxides, and reactive oxygen species (ROS) in muscle, gills, and hepatopancreas. We found 24 active principles of pesticides, the most frequently being clomazone, atrazine, and propoxur. Bentazone was present at the highest amounts. The parameters evaluated in this study, including biochemical biomarkers and abiotic factors measured from the water, provided a separation of the months as a function of environmental conditions. There was a difference in activity and biomarker levels throughout the year within the same site and in some months between sites. The greater concentration or variety of pesticides associated with extreme abiotic (very high temperatures) data generated increased oxidative stress, with high levels of protein damage and considerable lipid damage in all tissues, as well as elevation in ROS, even with high levels of antioxidant capacity and non-protein thiols. With these data, we intend to warn about the risks of exposure to these environmental conditions by trying to contribute to the preservation of limnic fauna, especially aeglid crabs, because most species are under some degree of threat.


Assuntos
Anomuros/efeitos dos fármacos , Biomarcadores/metabolismo , Exposição Ambiental/efeitos adversos , Praguicidas/efeitos adversos , Animais , Anomuros/metabolismo
6.
Bull Environ Contam Toxicol ; 104(5): 575-581, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166333

RESUMO

Intensive agricultural and livestock activities demand high pesticide use and, consequently, contaminants reach aquatic ecosystems. In the lower Jacuí River, southern Brazil, there is a lack of knowledge about pesticide residues in water samples and the biochemical responses in native fish species. Thus, this study aimed to estimate the influence of pesticide residues and water parameters to biomarker responses in the native fish Astyanax spp. We performed seasonal biomonitoring in 2017 with water samples and fish collections. Biomarkers of oxidative stress, antioxidants, biotransformation, and neurotoxicity were analyzed in fish tissues. Fourteen pesticide residues were detected; they presented correlations with detoxification enzyme and oxidative stress biomarkers. These data indicate that most of variations can be related to the pesticide presence in water indicating high aquatic pollution in this place.


Assuntos
Characidae/metabolismo , Monitoramento Ambiental/métodos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Agricultura , Animais , Biomarcadores/metabolismo , Brasil , Ecossistema , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Mol Biol Rep ; 45(6): 2631-2639, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30353476

RESUMO

This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] against the toxic effects of mercury in silver catfish (Rhamdia quelen). The animals were treated during 30 consecutive days with a (PhSe)2 supplemented feed (3.0 mg kg-1) or commercial feed. During the last 5 days the animals received a daily intraperitoneal dose of HgCl2 (1.7 mg kg-1) or Saline (0.9%). Twenty-four hours after the last HgCl2 injection, the animals were euthanized by spinal cord section to biological material obtainment. Hepatic (AST and ALT) and renal (ammonia and creatinine) toxicity biomarkers, δ-ALA-D activity, TBARS, total and non-protein thiols levels and hepatic, renal and blood mercury (Hg) and zinc (Zn) content were evaluated. Considering renal parameters, HgCl2 exposition increased serum creatinine levels and decreased δ-ALA-D activity, total and non-protein thiols and TBARS levels. HgCl2 exposure also decreased blood δ-ALA-D activity. With exception of blood δ-ALA-D activity and total thiols levels, (PhSe)2 supplementation partially prevented mercury induced alterations. Animals exposed to HgCl2 presented an increase in liver and kidney Hg content and a decrease in liver and blood Zn content. The alteration in blood Zn content was partially prevented with (PhSe)2 supplementation. With the exception of mercury and zinc content, no effects of HgCl2 exposure on hepatic tissue were observed. These results show that (PhSe)2 supplementation can represent a promising alternative to prevent the toxic effects presented by Hg exposure.


Assuntos
Derivados de Benzeno/farmacologia , Intoxicação por Mercúrio/tratamento farmacológico , Intoxicação por Mercúrio/prevenção & controle , Compostos Organosselênicos/farmacologia , Animais , Derivados de Benzeno/metabolismo , Peixes-Gato/metabolismo , Creatinina/sangue , Dieta , Suplementos Nutricionais , Feminino , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Cloreto de Mercúrio/administração & dosagem , Mercúrio/sangue , Intoxicação por Mercúrio/sangue , Compostos Organosselênicos/metabolismo , Compostos de Sulfidrila/sangue , Zinco/sangue
8.
Bull Environ Contam Toxicol ; 100(4): 524-528, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29464278

RESUMO

Although designed to control pests selectively, there is some evidence that environmental contamination by pesticides increases risks for humans and wildlife. In the present study, we evaluated biomarkers of oxidative stress in Astyanax jacuhiensis exposed to (5, 15 and 30 µg L-1) of carbamate Propoxur (PPX) for 96 h. Glutathione S-transferase (GST) in liver and gills showed reduced activity in all PPX concentrations tested. Acetylcholinesterase (AChE) activities reduced in brain and muscle at concentrations 15 and 30 µg L-1 of PPX. Lipid peroxidation (LPO) and hydrogen peroxide (HP) had no significant differences. In the brain, protein carbonyl (PC) increased in all groups treated with PPX. Although PPX is a selective pesticide, it causes oxidative damage and enzyme alteration in fish. This study pointed out some biomarkers that could be used to assess effects of environmentally relevant concentrations of pesticides, and infer about studies using fish as bioindicator.


Assuntos
Characidae/metabolismo , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Propoxur/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Água Doce/química , Inseticidas/metabolismo , Especificidade de Órgãos , Propoxur/metabolismo , Carbonilação Proteica , Poluentes Químicos da Água/metabolismo
9.
Neurotoxicol Teratol ; 95: 107147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36493994

RESUMO

Glyphosate-Based Herbicides (GBH) show risks to the environment and also to aquatic organisms, such as fish. The present work aimed to evaluate the effects of GBH and Pure Glyphosate (PG) exposure on Danio rerio embryos at drinking water concentrations. Zebrafish embryos were exposed to 250, 500, and 1000 µg L-1 of Roundup Original DI® and pure glyphosate for 96 h. Glyphosate concentration in water, parameters physicochemical water, survival, hatching rate, heart rate, malformations, behavior, and biomarkers were evaluated. We verified that at 6 h post-fertilization (hpf), animals exposed to GBH 500 showed decreased survival as compared to the control. The hatching rate increased in all groups exposed to GBH at 48 hpf as compared to the control group. The embryos exposed did not present changes in the spontaneous movement and touch response. Exposed groups to GBH demonstrated a higher number of malformations in fish embryos as compared to the control. Most malformations were: pericardial edema, yolk sac edema, body malformations, and curvature of the spine. In heart rate, bradycardia occurred in groups exposed, as predicted due to cardiac abnormalities. As biochemical endpoints, we observed a decrease in Glutathione S-transferase (GBH 250, GBH 500 and PG 250) and Acetylcholinesterase (GBH 250 and PG 250) activity. No differences were found between the groups in the concentration of protein, Total Antioxidant Capacity Against Peroxyl Radicals, Lipid peroxidation, Reactive Oxygen Species, Non-protein thiols, and Catalase. In conclusion, the damage in all evaluated stages of development was aggravated by survival and malformations. Therefore, the large-scale use of GBHs, coupled with the permissiveness of its presence could be the cause damage to the aquatic environment affecting the embryonic development of non-target organisms.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Larva , Peixe-Zebra , Herbicidas/toxicidade , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa